163 research outputs found

    Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations

    Get PDF
    summary:In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least μ1\mu_1 measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method

    Trade-Offs Model Of Multi-Objective Reservoir Operation With Uncertainties

    Full text link
    As the increase of water resources management and exploitation goals, it is gaining increasing weights for reservoir operation to seek optimal options for the balance between multiple and contradictory water resources use objectives. This study develops a trade-offs model to quantify the economic benefits of reservoir operation rules on the downstream water supply yield. Uncertainties of different water use benefits are considered by using a Monte Carlo method in the trade-offs model. The case study is analyzed to evaluate its performance in terms of water use benefits of agriculture, hydropower, flood control and environmental water requirements in the Yellow River, China. Trade-offs results are got among water resources needs of social development and environmental protections under the reservoir operation. The results indicate that there are magnificent trade-offs between ecological benefit and social economic development under different management policies and scenarios. This study could provide a simple but robust framework for quantifying the consequences of management options with reservoir operations under control. The results could be used for reference of compromised solutions to the ecological and human negotiations for water. Acknowledgement: This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein

    A Class of Lie 2-Algebras in Higher-Order Courant Algebroids

    Get PDF
    Abstract In this paper, we study the relation of the algebraic properties of the higher-order Courant bracket and Dorfman bracket on the direct sum bundle for an m-dimensional smooth manifold M, and a Lie 2-algebra which is a "categorified" version of a Lie algebra. We prove that the higher-order Courant algebroids give rise to a semistrict Lie 2-algebra, and we prove that the higher-order Dorfman algebroids give rise to a hemistrict Lie 2-algebra. Consequently, there is an isomorphism from the higher-order Courant algebroids to the higher-order Dorfman algebroids as Lie 2-algebras homomorphism

    Integrating multi-omics data to reveal the effect of genetic variant rs6430538 on Alzheimer's disease risk

    Get PDF
    IntroductionGrowing evidence highlights a potential genetic overlap between Alzheimer's disease (AD) and Parkinson's disease (PD); however, the role of the PD risk variant rs6430538 in AD remains unclear.MethodsIn Stage 1, we investigated the risk associated with the rs6430538 C allele in seven large-scale AD genome-wide association study (GWAS) cohorts. In Stage 2, we performed expression quantitative trait loci (eQTL) analysis to calculate the cis-regulated effect of rs6430538 on TMEM163 in both AD and neuropathologically normal samples. Stage 3 involved evaluating the differential expression of TMEM163 in 4 brain tissues from AD cases and controls. Finally, in Stage 4, we conducted a transcriptome-wide association study (TWAS) to identify any association between TMEM163 expression and AD.ResultsThe results showed that genetic variant rs6430538 C allele might increase the risk of AD. eQTL analysis revealed that rs6430538 up-regulated TMEM163 expression in AD brain tissue, but down-regulated its expression in normal samples. Interestingly, TMEM163 showed differential expression in entorhinal cortex (EC) and temporal cortex (TCX). Furthermore, the TWAS analysis indicated strong associations between TMEM163 and AD in various tissues.DiscussionIn summary, our findings suggest that rs6430538 may influence AD by regulating TMEM163 expression. These discoveries may open up new opportunities for therapeutic strategies targeting AD

    Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    Full text link
    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall gold nanoclusters with a naturally occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH coated gold nanoclusters can escape the RES absorption, leading to a good tumor uptake (8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall gold nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long term side effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.Comment: 15 Pages, 6 Figures, Scientific Reports 5, 201

    A framework for digital sunken relief generation based on 3D geometric models

    Get PDF
    Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose

    The Protection of Midazolam Against Immune Mediated Liver Injury Induced by Lipopolysaccharide and Galactosamine in Mice

    Get PDF
    Objectives: Liver macrophages agitated by Lipopolysaccharide (LPS) can enhance immuno-inflammatory responses in the liver which mediate liver injury and result in dysfunction. Midazolam has been reported to have inhibitory effects on activated immunity and escalated inflammation, however, what the effects of midazolam on the liver injury caused by excessive immuno-inflammatory response in sepsis, and what influence it will exert on inflamed liver macrophages need to be elucidated.Methods: In the present study, LPS and galactosamine-induced acute liver injury mice were used to observe the effect of midazolam in vivo. LPS-stimulated bone marrow cells were used to evaluate the influence of midazolam on monocytes in vitro.Results: Midazolam prevented liver tissue injury and decreased serum alanine transaminase (ALT) level in LPS plus galactosamine treated mice. Mechanistically, midazolam suppressed tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) produced by LPS stimulated liver macrophages in vivo and bone marrow monocytes in vitro, and reduced the expression of major histocompatibility complex class II (MHC II), cluster of differentiation 40 and 86 (CD40 and CD86) on the cell surface. These results could be reversed by PK-11195, a peripheral benzodiazepine receptor (PBR) blocker.Conclusion: Midazolam can prevent liver from LPS-induced immune mediated liver injury by inhibiting inflammation and immune activation in liver macrophages

    Digital relief generation from 3D models

    Get PDF
    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors
    corecore