16 research outputs found

    Untersuchungen zur miRNA-Expression in akuten Leukämien

    Get PDF
    MiRNAs stellen seit ihrer Erstbeschreibung einen neuen und viel versprechenden Ansatzpunkt im Verständnis zur Entstehung verschiedenster Krankheiten dar. Aufgrund ihrer erst kürzlichen Entdeckung war die Datenlage zu Beginn der Dissertation besonders bezüglich der miRNA Expression in akuten Leukämien begrenzt. Im Rahmen dieser Arbeit sollten sowohl Expressionsstudien als auch funktionelle Untersuchungen durchgeführt werden, um ein besseres Verständnis der Zusammenhänge zwischen miRNA-Dysregulationen und akuten Leukämien zu erreichen

    Rapid and highly specific screening for NPM1 mutations in acute myeloid leukemia

    Get PDF
    NPM1 mutations, the most frequent molecular alterations in acute myeloid leukemia (AML), have become important for risk stratification and treatment decisions for patients with normal karyotype AML. Rapid screening for NPM1 mutations should be available shortly after diagnosis. Several methods for detecting NPM1 mutations have been described, most of which are technically challenging and require additional laboratory equipment. We developed and validated an assay that allows specific, rapid, and simple screening for NPM1 mutations. FAST PCR spanning exons 8 to 12 of the NPM1 gene was performed on 284 diagnostic AML samples. PCR products were visualized on a 2% agarose E-gel and verified by direct sequencing. The FAST PCR screening method showed a specificity and sensitivity of 100%, i.e., all mutated cases were detected, and none of negative cases carried mutations. The limit of detection was at 5-10% of mutant alleles. We conclude that the FAST PCR assay is a highly specific, rapid (less than 2h), and sensitive screening method for the detection of NPM1 mutations. Moreover, this method is inexpensive and can easily be integrated in the routine molecular diagnostic work-up of established risk factors in AML using standard laboratory equipmen

    CD90 is dispensable for white and beige/brown adipocyte differentiation

    Get PDF
    Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question

    Rapid and highly specific screening for NPM1 mutations in acute myeloid leukemia

    Get PDF
    NPM1 mutations, the most frequent molecular alterations in acute myeloid leukemia (AML), have become important for risk stratification and treatment decisions for patients with normal karyotype AML. Rapid screening for NPM1 mutations should be available shortly after diagnosis. Several methods for detecting NPM1 mutations have been described, most of which are technically challenging and require additional laboratory equipment. We developed and validated an assay that allows specific, rapid, and simple screening for NPM1 mutations. FAST PCR spanning exons 8 to 12 of the NPM1 gene was performed on 284 diagnostic AML samples. PCR products were visualized on a 2 % agarose E-gel and verified by direct sequencing. The FAST PCR screening method showed a specificity and sensitivity of 100 %, i.e., all mutated cases were detected, and none of negative cases carried mutations. The limit of detection was at 5-10 % of mutant alleles. We conclude that the FAST PCR assay is a highly specific, rapid (less than 2 h), and sensitive screening method for the detection of NPM1 mutations. Moreover, this method is inexpensive and can easily be integrated in the routine molecular diagnostic work-up of established risk factors in AML using standard laboratory equipment

    Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus

    No full text
    ABSTRACT Although apoptotic phenomena have been observed in malignant cells infected by measles virus vaccine strain Edmonston B (MV-Edm), the precise oncolytic mechanisms are poorly defined. In this study we found that MV-Edm induced autophagy and sequestosome 1-mediated mitophagy leading to decreased cytochrome c release, which blocked the pro-apoptotic cascade in non-small cell lung cancer cells (NSCLCs). The decrease of apoptosis by mitophagy favored viral replication. Persistent viral replication sustained by autophagy ultimately resulted in necrotic cell death due to ATP depletion. Importantly, when autophagy was impaired in NSCLCs MVEdm-induced cell death was significantly abrogated despite of increased apoptosis. Taken together, our results define a novel oncolytic mechanism by which mitophagy switches cell death from apoptosis to more efficient necrosis in NSCLCs following MV-Edm infection. This provides a foundation for future improvement of oncolytic virotherapy or antiviral therapy

    Boolean modeling identifies Greatwall/MASTL as an important regulator in the AURKA network of neuroblastoma

    No full text
    Aurora Kinase A (AURKA) is often overexpressed in neuroblastoma (NB) with poor outcome. The causes of AURKA overexpression in NB are unknown. Here, we describe a gene regulatory network consisting of core regulators of AURKA protein expression and activation during mitosis to identify potential causes. This network was transformed to a dynamic Boolean model. Simulated activation of the serine/threonine protein kinase Greatwall (GWL, encoded by MASTL) that attenuates the pivotal AURKA inhibitor PP2A, predicted stabilization of AURKA. Consistent with this notion, gene set enrichment analysis showed enrichment of mitotic spindle assembly genes and MYCN target genes in NB with high GWL/MASTL expression. In line with the prediction of GWL/MASTL enhancing AURKA, elevated expression of GWL/MASTL was associated with NB risk factors and poor survival of patients. These results establish Boolean network modeling of oncogenic pathways in NB as a useful means for guided discovery in this enigmatic cancer. (C) 2015 Elsevier Ireland Ltd. All rights reserved

    The mitochondrial genetic landscape in neuroblastoma from tumor initiation to relapse

    No full text
    Little is known about changes within the mitochondrial (mt) genome during tumor progression in general and during initiation and progression of neuroblastoma (NB) in particular. Whole exome sequencing of corresponding healthy tissue, primary tumor and relapsed tumor from 16 patients with NB revealed that most NB harbor tumor-specific mitochondrial variants. In relapsed tumors, the status of mt variants changed in parallel to the status of nuclear variants, as shown by increased number and spatio-temporal differences of tumor-specific variants, and by a concomitant decrease of germline variants. As mt variants are present in most NB patients, change during relapse and have a higher copy number compared to nuclear variants, they represent a promising new source of biomarkers for monitoring and phylogenetic analysis of NB

    CD90 Is Dispensable for White and Beige/Brown Adipocyte Differentiation

    No full text
    Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question

    Trail (TNF-related apoptosis-inducing ligand) induces an inflammatory response in human adipocytes

    No full text
    Abstract High serum concentrations of TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor protein family, are found in patients with increased BMI and serum lipid levels. In a model of murine obesity, both the expression of TRAIL and its receptor (TRAIL-R) is elevated in adipose tissue. Accordingly, TRAIL has been proposed as an important mediator of adipose tissue inflammation and obesity-associated diseases. The aim of this study was to investigate if TRAIL regulates inflammatory processes at the level of the adipocyte. Using human Simpson-Golabi-Behmel syndrome (SGBS) cells as a model system, we found that TRAIL induces an inflammatory response in both preadipocytes and adipocytes. It stimulates the expression of interleukin 6 (IL-6), interleukin 8 (IL-8) as well as the chemokines monocyte chemoattractant protein-1 (MCP-1) and chemokine C-C motif ligand 20 (CCL-20) in a time- and dose-dependent manner. By using small molecule inhibitors, we found that both the NFκB and the ERK1/2 pathway are crucial for mediating the effect of TRAIL. Taken together, we identified a novel pro-inflammatory function of TRAIL in human adipocytes. Our findings suggest that targeting the TRAIL/TRAIL-R system might be a useful strategy to tackle obesity-associated adipose tissue inflammation
    corecore