17 research outputs found

    Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation

    No full text
    Understanding dynamic profiles of tar in coal pyrolysis is vital to high quality chemical production and upgrading process of tar, which is difficult to be accessed experimentally. Using large coal models with reasonable distribution of functional groups, ReaxFF MD method can shed light on comprehensive structures and reaction details of coal tar in pyrolysis, which complements available experimental observations. In this work, a large model with 98,748 atoms of Naomaohu low-rank coal is constructed to explore tar behaviors for the first time computationally by heat-up ReaxFF MD simulations at 500-2500 K. The correspondence between the tar behaviors and the divided four pyrolysis stages observed would be very helpful for modulating the composition and yield of tar and the subsequent upgrading process. The dynamic profiles of bridge bonds, ring intermediates and the detailed structures of hydrocarbons in tar (C-5-C-40 fragments) are revealed, which shows that the five- and seven-membered ring intermediates in tar should be soot precursors during coal pyrolysis process. The increasing trend of -O-(CH2)(n)- is strongly related to low-temperature cross-linking reactions during low-rank coal pyrolysis, while the increasing trend of C-ar-C-ar plays a significant role in recombination reactions at high temperature. Moreover, the simulation also shows that the production of aliphatic hydrocarbons is favored at the primary pyrolysis stage, accompanied with high concentration of oxygenated compounds produced, while aromatic fragments are most likely generated at the secondary pyrolysis stage where the amount of phenolic products tends to decrease

    The Deoptimization of Rabies Virus Matrix Protein Impacts Viral Transcription and Replication

    No full text
    Rabies virus (RABV) matrix (M) protein plays several important roles during RABV infection. Although previous studies have assessed the functions of M through gene rearrangements, this interferes with the position of other viral proteins. In this study, we attenuated M expression through deoptimizing its codon usage based on codon pair bias in RABV. This strategy more objectively clarifies the role of M during virus infection. Codon-deoptimized M inhibited RABV replication during the early stages of infection, but enhanced viral titers at later stages. Codon-deoptimized M also inhibited genome synthesis at early stage of infection and increased the RABV transcription rates. Attenuated M through codon deoptimization enhanced RABV glycoprotein expression following RABV infection in neuronal cells, but had no influence on the cell-to-cell spread of RABV. In addition, codon-deoptimized M virus induced higher levels of apoptosis compared to the parental RABV. These results indicate that codon-deoptimized M increases glycoprotein expression, providing a foundation for further investigation of the role of M during RABV infection

    Heterogenous glucose-stimulated insulin secretion at single islet level

    No full text
    Insulin secretion by pancreatic islets plays a vital role in regulating blood glucose levels. Nevertheless, the mechanism responsible for this dynamic insulin secretion has not been completely understood, particularly at the single islet level. In this study, we have successfully developed an easy microfluidic platform that allows for the exploration of dynamic glucose-stimulated insulin secretion (GSIS) at the single islet level. With the utilization of this platform, we evaluated dynamic GSIS from single islets isolated from both normal and diabetic rats. Our results demonstrate that islets can be categorized into three types based on their dynamic GSIS: Type I exhibits a biphasic GSIS profile with a fast first phase and flat second phase; Type II also has a biphasic GSIS profile with a fast first phase but a slow increased second phase; Type III displays only a slowly increased second phase and lacks a fast first phase. RNA sequencing analysis demonstrated that the cell type and exocytosis-specific genes are consistent with the proportion of cells and insulin release kinetics among the three types of islets, respectively. Moreover, our findings suggest that high expression of Atp5pb is anti-correlated with the first phase of insulin secretion. Furthermore, we revealed that diabetic islets exhibit only the type I GSIS response, indicating a deliberate impairment of the second phase of insulin secretion. Together, this device serves as a crucial tool in the research field of islets and diabetes, allowing researchers to investigate islet functional heterogeneity and identity at the single islet level

    Significant reduction of antibiotic consumption and patients' costs after an action plan in China, 2010-2014.

    No full text
    On July 1, 2011, the Chinese government launched a national Action Plan for antibiotic stewardship targeting antibiotic misuse in public hospitals. The aim of this study was to evaluate the impacts of the Action Plan in terms of frequency and intensity of antibiotic utilization and patients costs in public general hospitals.Administrative pharmacy data from July 2010 to June 2014 were sampled from 65 public general hospitals and divided into three segments: (1) July 2010 to June 2011 as the preparation period; (2) July 2011 to June 2012 as the intervention period; and (3) July 2012 to June 2014 as the assessment period. The outcome measures included (1) antibiotic prescribing rates; (2) intensity of antibiotic consumption; (3) patients costs; and (4) duration of peri-operative antibiotic treatment in clean surgeries of thyroidectomy, breast, hernia, and orthopedic procedures. Longitudinal and cross-sectional analyses were conducted.Longitudinal analyses showed significant trend changes in the frequency and intensity of antibiotic consumption, the patients' costs on antibiotics, and the duration of antibiotic treatment received by surgical patients undergoing the 4 clean procedures during the intervention period. Cross-sectional analyses showed that the antibiotic prescribing rates were reduced to 35.3% and 12.9% in inpatient and outpatient settings, that the intensity of antibiotic consumption was reduced to 35.9 DDD/100 bed-days, that patients' costs on antibiotics were reduced significantly, and that the duration of peri-operative antibiotic treatment received by surgical patients undergoing the 4 types of clean procedures decreased to less than 24 hour during the assessment period.The Action Plan, as a combination of managerial and professional strategies, was effective in reducing the frequency and intensity of antibiotic consumption, patients' costs on antibiotics, and the duration of peri-operative antibiotic treatment in the 4 clean surgeries

    Changes in patients’ costs.

    No full text
    <p>The stack plots represent the average monthly data of costs for inpatients (A) and outpatients (B) during the preparation, intervention, and assessment periods. The costs are summarized as the costs on hospital stay (TO), medication (ME), antibiotics (AN), and very-restricted antibiotics (VR). Cross-sectional analyses were conducted by comparing the average yearly data on patents’ costs on hospital stay, medication, antibiotics, and very-restricted antibiotics (Very-Restricted) for both inpatients (C—F) and outpatients (G—I). P: preparation; I: intervention; A: assessment; *significant difference in intervention/assessment vs. preparation; <sup>#</sup>significant difference in assessment vs. intervention.</p
    corecore