9 research outputs found

    End stage renal disease patients have a skewed T cell receptor Vβ repertoire

    Get PDF
    Background: End stage renal disease (ESRD) is associated with defective T-cell mediated immunity. A diverse T-cell receptor (TCR) Vβ repertoire is central to effective T-cell mediated immune responses to foreign antigens. In this study, the effect of ESRD on TCR Vβ repertoire was assessed. Results: A higher proportion of ESRD patients (68.9 %) had a skewed TCR Vβ repertoire compared to age and cytomegalovirus (CMV) - IgG serostatus matched healthy individuals (31.4 %, P < 0.001). Age, CMV serostatus and ESRD were independently associated with an increase in shifting of the TCR Vβ repertoire. More differentiated CD8+ T cells were observed in young ESRD patients with a shifted TCR Vβ repertoire. CD31-expressing naive T cells and relative telomere length of T cells were not significantly related to TCR Vβ skewing. Conclusions: ESRD significantly skewed the TCR Vβ repertoire particularly in the elderly population, which may contribute to the uremia-associated defect in T-cell mediated immunity

    Cytomegalovirus contributes partly to uraemia-associated premature immunological ageing of the T cell compartment

    Get PDF
    Cytomegalovirus (CMV) infection has been implicated in accelerated T cell ageing. End-stage renal disease (ESRD) patients have a severely immunologically aged T cell compartment but also a high prevalence of CMV infection. We investigated whether CMV infection contributes to T cell ageing in ESRD patients. We determined the thymic output by the T cell receptor excision circle (TREC) content and percentage of CD31+ naïve T cells. The proliferative history of the T cell compartment by determination of the relative telomere length (RTL) and the T cell differentiation status was determined by immunophenotyping. It appeared that CMV infection did not affect thymic output but reduced RTL of CD8+ T cells in ESRD patients. Moreover, increased T cell differentiation was observed with higher percentages of CD57+ and CD28null CD4+ and CD8+ memory T cells. These CD28null T cells had significantly shorter telomeres compared to CD28+ T cells. Therefore we concluded that CMV infection does not affect the decreased thymic output but increases T cell differentiation as observed in ESRD-related premature T cell ageing

    Effects of bariatric surgery on telomere length and T-cell aging

    Get PDF
    Background Obesity adversely affects health and is associated with subclinical systemic inflammation and features of accelerated aging, including the T-cell immune system. The presence of metabolic syndrome (MetS) may accelerate, while bariatric surgery might reverse these phenomena. To examine the effects of MetS and bariatric surgery on T-cell aging, we measured relative telomere length (RTL) and T-cell differentiation status in obese patients before and after bariatric surgery. Methods WHO II/III classified obese patients scheduled for bariatric surgery were included: 41 without MetS and 67 with MetS. RTL and T-cell differentiation status were measured in circulating CD4+ and CD8+ T cells via flow cytometry. T-cell characteristics were compared between patients with and without MetS prior to and at 3, 6, and 12 months after surgery considering effects of age, cytomegalovirus-serostatus, and weight loss. Results Thymic output, represented by numbers of CD31-expressing naive T cells, showed an age-related decline in patients with MetS. MetS significantly enhanced CD8+ T-cell differentiation. Patients with MetS had significant lower CD4+ RTL\ud than patients without MetS. Within the first 6 months after bariatric surgery, RTL increased in CD4+ T cells after which it decreased at month 12. A decline in both thymic output and more differentiated T cells was seen following bariatric surgery, more pronounced in the MetS group and showing an association with percentage of body weight loss. Conclusions In obese patients, MetS results in attrition of RTL and acceler

    One-fits-all pretreatment protocol facilitating Fluorescence in Situ Hybridization on formalin-fixed paraffin-embedded, fresh frozen and cytological slides

    Get PDF
    Background: The Fluorescence In Situ Hybridization (FISH) technique is a very useful tool for diagnostic and prognostic purposes in molecular pathology. However, clinical testing on patient tissue is challenging due to variables of tissue processing that can influence the quality of the results. This emphasizes the necessity of a standardized FISH protocol with a high hybridization efficiency. We present a pretreatment protocol that is easy, reproducible, cost-effective, and facilitates FISH on all types of patient material simultaneously with good quality results. During validation, FISH analysis was performed simultaneously on formalin-fixed paraffin-embedded, fresh frozen and cytological patient material in combination with commercial probes using our optimized one-fits-all pretreatment protocol. An optimally processed sample is characterized by strong specific signals, intact nuclear membranes, non-disturbing autofluorescence and a homogeneous DAPI staining. Results: In our retrospective cohort of 3881 patient samples, overall 93% of the FISH samples displayed good quality results leading to a patient diagnosis. All FISH were assessed on quality aspects such as adequacy and consistency of signal strength (brightness), lack of background and / or cross-hybridization signals, and additionally the presence of appropriate control signals were evaluated to assure probe accuracy. In our analysis 38 different FISH probes from 3 commercial manufacturers were used (Cytocell, Vysis and ZytoLight). The majority of the patients in this cohort displayed good signal quality and barely non-specific background fluorescence on all tissue types independent of which commercial probe was used. Conclusion: The optimized one-fits-all FISH method is robust, reliable and reproducible to deliver an accurate result for patient diagnostics in a lean workflow and cost-effective manner. This protocol can be used for widespread application in cancer and non-cancer diagnostics and research

    Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS

    Get PDF
    One of the hallmarks of B lymphoid malignancies is a B cell clone characterized by a unique footprint of clonal immunoglobulin (IG) gene rearrangements that serves as a diagnostic marker for clonality assessment. The EuroClonality/BIOMED-2 assay is currently the gold standard for analyzing IG heavy chain (IGH) and κ light chain (IGK) gene rearrangements of suspected B cell lymphomas. Here, the EuroClonality-NGS Working Group presents a multicentre technical feasibility study of a novel approach involving next-generation sequencing (NGS) of IGH and IGK loci rearrangements that is highly suitable for detecting IG gene rearrangements in frozen and formalin-fixed paraffin-embedded tissue specimens. By employing gene-specific primers for IGH and IGK amplifying smaller amplicon sizes in combination with deep sequencing technology, this NGS-based IG clonality analysis showed robust performance, even in DNA samples of suboptimal DNA integrity, and a high clinical sensitivity for the detection of clonal rearrangements. Bioinformatics analyses of the high-throughput sequencing data with ARResT/Interrogate, a platform developed within the EuroClonality-NGS Working Group, allowed accurate identification of clonotypes in both polyclonal cell populations and monoclonal lymphoproliferative disorders. This multicentre feasibility study is an important step towards implementation of NGS-based clonality assessment in clinical practice, which will eventually improve lymphoma diagnostics

    Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations

    Get PDF
    Background: Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods: MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results: Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type–specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion: MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a “Dutch MTB model” for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice: Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing

    A killer on the road: Circulating CD4 +CD28null T cells as cardiovascular risk factor in ESRD patients

    No full text
    Chronic kidney disease (CKD) is associated with a sharp increase in the risk for cardiovascular disease, which can only be partially explained by known classical risk factors. However, there is a well-established association with increased systemic inflammation. In the last decade, an unique cytotoxic CD4 + T cell population has been identified, which can be recognized by the loss of the costimulatory cell surface marker CD28, hence their name CD4 +CD28null T cells. These cells are highly proinflammatory, have the functional features of professional killer lymphocytes and can expand from less than 1% to over 50% of the total CD4 + T cell population. In this review, we show that these cells probably play an important role in destabilizing atherosclerotic plaques and could explain, at least in part, the association of cardiovascular disease with an increased inflammatory milieu in CKD patients

    Lo of CD28 on peripheral T cells decreases the risk for early acute rejection after kidney transplantation

    No full text
    Background End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR). Methods 222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters. Results Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regreion analysis showed that higher CD4+CD28null T-cell numbers was aociated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001). Conclusion Immunological ageing-related expansion of highly differentiated CD28null T cells is aociated with a lower risk for EAR

    Responsiveness of chronic lymphocytic leukemia cells to B-cell receptor stimulation is associated with low expression of regulatory molecules of the nuclear factor-κB pathway

    No full text
    Chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical and biological characteristics. Differences in Ca2+ levels among cases, both basal and upon B-cell receptor (BCR) stimulation, may reflect heterogeneity in the pathogenesis due to cell-intrinsic factors. Our aim was to elucidate cell-intrinsic differences between BCR-responsive and -unresponsive cases. We therefore determined BCR responsiveness ex vivo based on Ca2+ influx upon α-IgM stimulation of purified CLL cell fractions from 52 patients. Phosphorylation levels of various BCR signaling molecules, and expression of activation markers were assessed by flow cytometry. Transcription profiling of responsive (n=6) and unresponsive cases (n=6) was performed by RNA sequencing. Real-time quantitative polymerase chain reaction analysis was used to validate transcript level differences in a larger cohort. In 24 cases an α-IgM response was visible by Ca2+ influx which was accompanied by higher phosphorylation of PLCγ2 and Akt after α-IgM stimulation in combination with higher surface expression of IgM, IgD, CD19, CD38 and CD43 compared to the unresponsive cases (n=28). Based on RNA sequencing analysis several components of the canonical nuclear factor (NF)-κB pathway, especially those related to NF-κB inhibition, were expressed more highly in unresponsive cases. Moreover, upon α-IgM stimulation, the expression of these NF-κB pathway genes (especially genes coding for NF-κB pathway inhibitors but also NF-κB subunit REL) was upregulated in BCR-responsive cases while the level did not change, compared to basal level, in the unresponsive cases. These findings suggest that cells from CLL cases with enhanced NF-κB signaling have a lesser capacity to respond to BCR stimulation
    corecore