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Abstract
Background Obesity adversely affects health and is associated with subclinical systemic inflammation and features of
accelerated aging, including the T-cell immune system. The presence of metabolic syndrome (MetS) may accelerate, while
bariatric surgery might reverse these phenomena. To examine the effects of MetS and bariatric surgery on T-cell aging, we
measured relative telomere length (RTL) and T-cell differentiation status in obese patients before and after bariatric surgery.
Methods WHO II/III classified obese patients scheduled for bariatric surgery were included: 41 without MetS and 67 with
MetS. RTL and T-cell differentiation status were measured in circulating CD4+ and CD8+ T cells via flow cytometry. T-cell
characteristics were compared between patients with and without MetS prior to and at 3, 6, and 12 months after surgery
considering effects of age, cytomegalovirus-serostatus, and weight loss.
Results Thymic output, represented by numbers of CD31-expressing naive T cells, showed an age-related decline in patients
with MetS. MetS significantly enhanced CD8+ T-cell differentiation. Patients with MetS had significant lower CD4+ RTL
than patients without MetS. Within the first 6 months after bariatric surgery, RTL increased in CD4+ T cells after which it
decreased at month 12. A decline in both thymic output and more differentiated T cells was seen following bariatric surgery,
more pronounced in the MetS group and showing an association with percentage of body weight loss.
Conclusions In obese patients, MetS results in attrition of RTL and accelerated T-cell differentiation. Bariatric surgery
temporarily reverses these effects. These data suggest that MetS is a risk factor for accelerated aging of T cells and that MetS
should be a more prominent factor in the decision making for eligibility for bariatric surgery.

Introduction

Obesity (body mass index (BMI) > 30 kg/m2) is a risk factor
for a wide variety of diseases including hypertension, liver
steatosis, and cancer [1]. The metabolic syndrome (MetS),
characterized by biochemical dysregulation of triglycerides,
high-density lipoprotein (HDL) cholesterol, glucose, blood
pressure, and increase in abdominal waist circumference,
increases this risk [2]. MetS in the context of obesity is
associated with the development of a chronic subclinical
systemic inflammatory state [3]. Major players in the
development of this inflammatory milieu are adipocyto-
kines, adipokines, and cytokines produced by white adi-
pocytes that closely regulate lipid metabolism and the
inflammatory response [4], and contribute to the develop-
ment of insulin resistance [3, 5, 6].

Naive, antigen-inexperienced T cells that have recently
left the thymus, express CD31 and are called recent thymic
emigrants (RTEs). In response to infectious agents, either
T-helper (CD4+) or T-cytotoxic (CD8+) cells differentiate
from naive into memory, antigen-experienced T cells to
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enable a potent second response to the same stimuli. Within
the memory T-cell pool, central (CM), effector memory
(EM), and terminally differentiated CD45RA+ EM
(EMRA) T cells can be distinguished with different phe-
notypical and functional characteristics. Changes in this
response and in T-cell characteristics have been linked to
the reduced lifespan seen in morbidly obese patients [7].
The link between chronic (sub)clinical inflammation and
advancing age, “inflammaging”, leads to accelerated aging
and frailty [8]. The release of pro-inflammatory cytokines
associated with inflammaging activates the immune system,
which eventually leads to sustained damage on cells and
tissues [9]. With aging, the thymus involutes resulting in a
decrease in circulating naive T cells and a subsequent
increase in more differentiated T cells, such as EMRA
T cells and T cells lacking expression of the costimulatory
molecule CD28 (CD28null), causing an enhanced T-cell
differentiation state [8, 9].

Both a reduced thymic output and an enhanced T-cell
differentiation status are validated biomarkers for human
T-cell aging, as well as attrition of telomeres [10–12].
Telomeres are small DNA repeats located at the end of
chromosomes that protect from fusion but shorten with each
cell division [13].

Cytomegalovirus (CMV) seropositivity should be con-
sidered when studying T-cell aging as it leaves a clear
fingerprint on circulating T cells, resembling T-cell aging.
CMV-seropositivity has been associated with a more dif-
ferentiated memory T-cell compartment, expansion of the
pool of CD28null T cells and attrition of telomeres in
T cells [10, 14–17]. CMV prevalence ranges from 30 to
100% and depends on socioeconomic and ethnic back-
ground [18].

Total T-cell numbers, as well as cytotoxic CD8+ and
CD4+ T cells are reported to be positively associated with
BMI and the prevalence of MetS by some authors [19–21],
but not by others [22, 23]. Also, several studies find that
BMI is inversely correlated with telomere length in T cells
[13, 24]. However, this has not been established in all
studies [13, 25]. The effect of MetS on T-cell aging has not
yet been investigated.

Bariatric surgery may be indicated as a treatment for
morbidly obese patients. [26]. Besides rapid loss of body
weight, bariatric surgery has been reported to reverse
obesity-related diseases including diabetes mellitus and
dyslipidemia [26]. Whether this procedure also induces
reversal of aging parameters, in particular premature T-cell
aging, is unclear.

Therefore, we aimed to determine the effects of MetS on
aging of circulating T-cell subsets, as well as the potential
reversal of T-cell aging by bariatric surgery.

Subjects and methods

Study design

This study was designed as a non-randomized prospective
cohort study. The study was approved by the general
Medical Ethical Committee (METC) with MEC identifica-
tion number 2012–134 of the Erasmus University Medical
Center, Rotterdam, The Netherlands. Approval of the
inclusion center occurred via the Board of Directors of the
Maasstad Hospital, Rotterdam, The Netherlands, with local
identification number 2012-51. The study is performed in
accordance with the local METC guidelines. The trial is
registered as part of the PROTECT trial in the Dutch trial
registry database using trial code 3663 (www.trialregister.nl).
This study was performed in accordance with the CON-
SORT 2010 statement, according to the Declaration
of Helsinki [27].

Study population

Patients with obesity and morbid obesity scheduled to
undergo bariatric surgery who visited the outpatient clinic
at the Maasstad Hospital between March 2014 and August
2015 were invited to participate in the study. All partici-
pating patients gave written informed consent before
inclusion. A patient flowchart showing all inclusions and
exclusions is depicted in Figure S1. To be eligible for
bariatric surgery, patients had to have a BMI (kg/m2)
corresponding with obese class II or III as defined by the
World Health Organization (WHO) with or without the
presence of the MetS [28, 29]. MetS was defined in
accordance to the National Cholesterol Education Program
ATPIII Guidelines, as fulfilling three out of five criteria
[30]. Exclusion criteria were obesity class I, other comor-
bidities than MetS, patients without basic understanding of
the Dutch or English language, or patients undergoing
another form of bariatric surgery than a laparoscopic gastric
bypass procedure (LGBP).

Bariatric surgery

All patients were scheduled to undergo the laparoscopic
Roux-and-Y gastric bypass procedure (LGBP). During a
LGBP, the jejenum is divided at 50 cm from the ligament of
Treitz into a biliopancreatic limb and a 150-cm alimentary
Roux limb. The proximal segment of the stomach is made
into a small pouch with stapling devices. A side-to-side
anastomosis is created between the pouch and the Roux
limb. The biliopancreatic limb is connected to the Roux
limb, 150 cm distally.

2190 F. Jongbloed et al.

http://www.trialregister.nl


Blood collection

After providing written informed consent, a venous
blood sample was obtained prior to surgery. The duration
until scheduled surgery was between several days and
five months after first blood sample. Prior to bariatric
surgery, venous samples of 107 patients were collected
for analysis. A selection of patients was asked to donate
another venous blood sample at time points 3 (n= 47),
6 (n= 10), and 12 (n= 11) months after surgery
(Figure S1). The largest subgroup at time point 3 months
was also analyzed separately (Table S1). The selection
was made since not all patients showed up in the
outpatient clinic during their scheduled follow-up visits,
or patients decided to be followed-up elsewhere (for
example, by their general practitioner). Blood samples
were collected in 10.0 mL BD Lithium-Heparin tubes
(Franklin Lakes, NJ, USA), with a maximum of two tubes
per time point.

CMV serology

CMV serology was assessed of all participants included in
the study at the diagnostic Department of Virology of
Erasmus University Medical Center, by determining the
presence of plasma IgG antibodies to CMV with an enzyme
immune assay (Biomerieux, VIDAS, Lyon, France). The
results were expressed as arbitrary units/mL (AU/mL), and
an outcome of ≥ 6 AU/mL was considered positive.

T-cell phenotyping and PBMC isolation

A whole blood staining was performed and analyzed on the
BD FACSCanto II (BD (Erembodegem, Belgium) using
FACSDiva software version 6.1.2 (BD) in order to deter-
mine percentages and absolute numbers of T-cell subsets
(Table 1). The analysis procedure, as well as further char-
acterization of the T cells has been described previously
[31]. Peripheral blood mononuclear cells (PBMC) were
isolated from heparinized blood samples by Ficoll gradient

centrifugation as described in detail before [32]. PBMC
were stored at −150 °C at 10 × 106 per vial until further
experiments.

Relative telomere length

The relative telomere length (RTL) of peripheral blood
T cells was determined by flow fluorescent in situ hybri-
dization (flowFISH) technique, as described previously
[10]. PBMCs were fixed and permeabilized and using the
FITC-labeled PNA-kit (DakoCytomation, Glostrup, Den-
mark), the telomere length of CD4+ and CD8+ T cells was
determined. As an internal standard, the sub cell line 1301
of CCRF-CEM (known for its long telomeres) was taken
along in this procedure as a reference. The median fluor-
escence intensity (FL1) with probe minus the median
FL1without probe of CD4+ and CD8+ T cells was related to
that of the cell line, both multiplied by the index of (non-
dividing) single cells (DNA index), and RTL could be
calculated using the following formula:

RTL ¼
(median FL1 sample cells with probe�median FL1 sample cells

without probe)�DNA index of control ð¼2Þ cells
(median FL1 control cells with probe�median FL1 control cells

without probe)�DNA index of sample ð¼1Þ cells
� 100

Statistical analysis

For all individual parameters, median and interquartile
ranges were computed. Comparison of two or more para-
meters was done with the parametric T-test or the non-
parametric variant Kruskall–Wallis test. Related samples
from the same patient were analyzed via the non-
parametric-related samples Friedman’s test. Prior to bar-
iatric surgery, a multivariate analysis was performed via
general linear models option, considering the Wilks’
Lambda test to evaluate which variables contributed to
T-cell characteristics measured in the circulation. General-
ized estimating equations (GEEs) were used to study the
development of the selected outcome variables over time
in patients after bariatric surgery, considering the relation
between the repeated measures in the same patient. Inter-
actions were investigated for outcome variables age,
extent of body weight loss, and MetS, with preset cutoffs
age (≤50/>50 years), percentage of body weight loss
(≤66%/>66%) [33], and MetS (yes/no). Repeated measures
of body weight were added to the model in case of a
statistically significant interaction (P < 0.05). Statistics were
computed with use of SPSS version 23 (IBM Corp,
released 2015, IBM SPSS Statistics for Mac, Version 23.0,
Armonk, NY: IBM Corp), Microsoft® Office Excel 2016
(version 16.12), SAS software version 9.4 (SAS Institute,
Inc., Cary, NC), and GraphPad Prism (GraphPad Software

Table 1 T-cell subsets and their corresponding staining markers

T-cell subset Marker

Recent thymic emigrants (RTEs) CD31+ naive

Naive T cells CD45RO−/CCR7+

Central memory T cells (CM) CD45RO+/CCR7+

Effector memory T cells (EM) CD45RO+/CCR7−

Terminally differentiated effector
memory T cells (EMRA)

CD45RO−/CCR7−

Total memory T cells (MEM) Sum of CM, EM, and EMRA

Advanced differentiated T cells CD28null
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Inc., version 5.01). Figures were made in Graphpad. For all
parameters, P < 0.05 was considered statistically significant.

Results

Baseline characteristics

A total of 107 patients were included in this study, con-
sisting of 41 patients without MetS and 66 patients with
MetS. Table 2 summarizes the baseline characteristics of
the included participants. Patients without MetS were more
often female than patients with MetS. In the group of
patients ≤50 years, patients with MetS were on average
significantly older (37 years) than patients without MetS
(31 years, P= 0.009). No significant differences were
observed with respect to distribution of CMV-seropositivity
between the study groups. Baseline characteristics of the
subgroup analyses at time point 3 months after surgery are
depicted in Table S1.

Lower numbers of RTEs due to MetS and age

A significant age-related decline of RTE (CD31+ naive
T cells) was observed in the CD8+, but not CD4+, T-cell
compartment (Table 3) (P= 0.001). Subgroup analyses
based on the presence of MetS, CMV-serostatus, or gender,
showed this significance persisted in the presence of MetS
(P= 0.02). These data suggest an age-related decline in
RTE in the CD8+ T-cell compartment with persistence in
the presence of MetS.

MetS enhances T-cell differentiation status

Patients with MetS had a significant lower number of CD4+

T cells (P= 0.02) and a higher number of more differ-
entiated CD28null CD4+ T cells (P= 0.04) (Table 3). In the

CD8+ T-cell compartment, patients with MetS showed
significantly higher numbers of total memory T cells
(P= 0.02), CM (CD45R0+/CCR7+) (P= 0.01), and term-
inally differentiated effector CD45RA+ memory T cells
(EMRA, CD45RO−/CCR7−) (P= 0.03). Advanced age
(>50 years) led to a significant lower number of CD8+

naive (CD45RO−/CCR7+) T cells (P= 0.01) (Table 3). In
patients ≤50 years, the presence of MetS was associated
with a lower number of CD4+ cells (P= 0.046). These data
point toward an advanced T-cell differentiation status in
patients with MetS.

Subgroup analyses showed that CMV-seropositivity
resulted in more differentiated CD4+ and CD8+ T cells
(EMRA and CD28null), whereas female gender resulted
in more CD8+ memory and CM T cells (Table 3). A mul-
tivariate analysis including MetS, age, CMV-seropositivity
and gender showed that MetS, CMV-seropositivity and
female gender were independent factors for the enhanced
CD4+ T-cell differentiation status, whereas for the total
cohort of CD8+ T-cell markers, independent factors were
age, CMV-seropositivity, and gender (Table S2).

MetS and age affect RTL of T cells prior to bariatric
surgery

RTL of CD4+ T cells was significantly shorter in the
MetS group compared with the no MetS group (P= 0.02)
(Fig. 1a). Age did not influence RTL (Fig. 1b). In patients
≤50 years, CD4+ RTL was significantly shorter in the
presence of MetS (P= 0.03) (Fig. 1c). No significance was
seen in the group >50 years with or without MetS, however,
a large spread in interquartile ranges was seen in both
groups. No significant differences were seen in CD8+ RTL
in either the different MetS (Fig. 1d), age (Fig. 1e), or
combined MetS and age (Fig. 1f) groups. These results
suggest enhanced telomere attrition in the CD4+ compart-
ment of patients with MetS, with most pronounced changes

Table 2 Baseline characteristics
of the different patient cohorts

Parameter BMI ≥ 35 kg/m2 no
MetS (n= 41)

BMI ≥ 35 kg/m2 with
MetS (n= 66)

P-value

Gender (male/female) 5/36 20/46 0.03

Body weight (kg) 126 (103–184) 129 (98–200) 0.11

BMI (kg/m2) 44 (35–65) 43 (35–57) 0.35

Age (mean, years) 34 (18–62) 43 (22–60) 0.07

Age (≤50/>50 years) 27/13 41/26 0.46

Age (mean (≤50/>50 years) 31 (18–46)/54 (51–62) 37 (22–50)/56 (51–60) 0.009/0.13

CMV (negative/positive/
unknown)

27/13/0 33/30/4 0.08

Age (mean CMV negative/
positive)

39 (18–62)/37 (25–56) 42 (22–60)/45 (25–60) 0.30/0.09

Significances (P < 0.05) are depicted in bold

BMI body mass index, MetS metabolic syndrome, CMV cytomegalovirus
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in the younger patients. CMV-related attrition of telomeres
was only observed within the CD4+, but not the CD8+ T-
cell compartment of morbidly obese patients without Mets
(P= 0.03). In a multivariate analysis, MetS was suggested
to be an independent factor for CD4+ or CD8+ RTL
(Table S2).

T-cell aging is partially reversed following surgery
and is associated with body weight loss

To study the effects of bariatric surgery on the changes seen
in the T-cell immune system and RTL over time, GEEs
were used. These GEEs considering the correlation between
the repeated measures in the same patient. Using T= 0
before surgery as a reference time point, we analyzed all
repeated measurements included during at least one time
point after surgery, i.e., at 3, 6, or 12 months after bariatric
surgery. Since most outcome parameters are influenced
by age and gender, the analyses were performed after
adjustments for both characteristics.

Up until 12 months, bariatric surgery resulted in a vast
decline in absolute CD4+, but not CD8+, RTE (P < 0.001)
especially in the first 6 months (P < 0.001) (Table 4a).
Between 6 and 12 months, the numbers of CD4+ RTE
significantly increased (P= 0.03). When adjusted for body

weight, the significance marginally disappeared (P= 0.07),
indicative of a correlation between body weight loss
and numbers of CD4+ RTE. Subgroup analyses showed
that these significances were due to the presence of MetS
(P= 0.008) and seen in patients of younger age (P=
0.002), indicating that the correlation between body weight
and RTE-decline was seen in patients ≤50 years with MetS.

In the more differentiated T-cell subsets, a significant
decrease in absolute numbers of CD4+ EM (P= 0.006) and
EMRA (P= 0.03), and a trend toward lower CD28null
T cells (P= 0.06) was seen, which was most significant
in the first 6 months postoperatively. Adjusting for body
weight revealed remaining significance, suggesting of
a weak association between body weight loss and the
numbers of CD4+ EM and EMRA. In subgroup analyses,
the numbers of CD28null T cells were also significantly
associated with CMV-seropositivity status (P= 0.047). In
the CD8+ T-cell compartment, the numbers of EM were
significantly decreased as well (P= 0.04). In contrast,
the absolute numbers of the less-differentiated CD8+

CM T cells were increased by bariatric surgery (P= 0.05),
especially in the first 3 months postoperatively (P= 0.001).
Adjusted for body weight, the significance in CD8+ CM
disappeared as well, whereas it remained in the EM T cells
(Table 4a).

Table 3 P-values of T-cell
differentiation markers of the
different patient cohorts prior to
surgery

MetS
(+ vs. –)

Age
(old vs. yng)

MetS × age
(+/old vs. –/yng)

CMV
(pos. vs. neg.)

Gender
(M vs. F)

CD4 T cells 0.02 (↓) 0.38 0.046 (↓) 0.12 0.68

Naive T cells 0.78 0.25 0.61 0.15 0.28

CD31 naive T cells 0.86 0.11 0.28 0.18 0.08

Memory T cells 0.33 0.88 0.57 0.92 0.75

Central memory
T cells

0.30 0.65 0.74 0.27 0.56

Effector memory
T cells

0.98 0.59 0.68 0.03 (↑) 0.09

EMRA T cells 0.21 0.73 0.26 0.02 (↑) 0.07

CD28null T cells 0.04 (↑) 0.74 0.13 <0.001 (↑) 0.27

CD8 T cells 0.12 0.40 0.14 0.16 0.52

Naive T cells 0.79 0.01 (↓) 0.07 0.51 0.47

CD31 naive T cells 0.98 0.001 (↓) 0.02 (↓) 0.98 0.39

Memory T cells 0.02 (↑) 0.51 0.08 0.003 (↑) 0.03 (↑)

Central memory
T cells

0.01 (↑) 0.81 0.14 0.29 0.004 (↑)

Effector memory
T cells

0.36 0.72 0.83 0.25 0.92

EMRA T cells 0.03 (↑) 0.41 0.11 <0.001 (↑) 0.07

CD28null T cells 0.06 0.20 0.06 <0.001 (↑) 0.18

Significant comparisons are depicted in bold. Arrows indicate direction of significance

MetS MetS vs. no MetS, Age total group >50 years vs. ≤50 years, MetS × age MetS group >50 years vs. no
MetS ≤50 years, CMV total group CMV vs. no CMV, Gender total group male vs. female patients, EMRA
terminally differentiated effector memory T cells, MetS metabolic syndrome, CMV cytomegalovirus
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Fig. 1 RTL prior to bariatric surgery (total group). a RTL of CD4+

T cells was significantly lower in the patients with MetS. b Age did not
have an effect on RTL of CD4+ T cells. c In patients ≤50 years, MetS
resulted in significantly lower CD4+ RTL than in the absence of MetS.

In patients >50 years, a large spread in interquartile range was seen
in both groups. d No changes were seen in the CD8+ RTL due to
MetS, e due to age or f due to both MetS and age. RTL relative
telomere length, MetS metabolic syndrome. *P < 0.05
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Variations in RTL after bariatric surgery

A significant increase in CD4+ RTL was seen after 3 (P=
0.007) and 6 (P= 0.002) months postoperatively. However,
at month 12, a decrease in RTL was observed (P < 0.001)
(Fig. 2a), thus resulting in an overall decrease in CD4+ RTL
throughout the first year after surgery (P= 0.017). Patients
without MetS (Fig. 2b) or with MetS (Fig. 2c) did not show
an overall interaction, however, in the MetS group in-
between time points showed a steady increase of RTL
within the first 6 months after which a decrease occurred.
The GEE model showed a decline in CD4+, as well (P=
0.04), and an interaction was found with more profound
weight loss (P= 0.01) (Table 4b). Subgroup analyses
revealed no additional changes due to the presence of MetS
or for the different age categories. The same trend was
observed in the CD8+ RTL, with significant increase in

length between 3 (P= 0.01) and 6 (P= 0.01) months fol-
lowed by a decrease at months 12 (P= 0.01). Overall, these
changes did not result in a significant change throughout the
first 12 months (Fig. 2d). Also, the mixed model analysis
revealed no overall significant changes in patients without
MetS (Fig. 2e) or with MetS (Fig. 2f).

Discussion

In present study, we show that MetS is a suggested risk
factor for accelerated attrition of telomeres in obese patients,
and a more differentiated T-cell compartment. Bariatric
surgery leads to a temporary, short-term increase of telo-
mere length and decreased T-cell differentiation status. Our
results suggest that bariatric surgery may temporarily
reverse this accelerated T-cell aging, and that patients with

Table 4a T-cell differentiation
markers after surgery including
interaction and subgroup
analyses

Parameter Adjusted for
age and gender

Adjusted for
body weight

Interactions Subgroup analyses

MetS Age BWL MetS
(+/–)

Age
(≤/>50 yrs)

TBWL
(≤/>66%)

CD4 CD31 naive <0.001 0.07 0.29 0.14 0.96 0.008/0.08 0.002/0.45 0.005/0.11

CD4 CM 0.60 N/A 0.10 0.93 0.34

CD4 EM 0.008 0.03 0.71 0.60 0.08

CD4 EMRA 0.03 0.02 0.89 0.19 0.04

CD4 CD28null 0.06 0.36 0.62 0.36 0.08 0.12/0.41 0.11/0.06 0.26/0.05

CD8 CD31 naive 0.52 N/A 0.08 0.87 0.79

CD8 CM 0.05 0.10 0.22 0.46 0.01

CD8 EM 0.02 0.005 0.23 0.79 0.35

CD8 EMRA 0.11 N/A 0.10 0.16 0.07

CD8 CD28null 0.30 N/A 0.22 0.50 0.04

Numbers correspond to P-values, significances (P < 0.05) are depicted in bold. Only in case of significant
differences after adjustment for age and gender (column 2), subgroup analyses were performed

CM central memory, EM effector memory, EMRA terminally differentiated effector memory T cells, N/A not
calculated, MetS metabolic syndrome, Age >50 years, TBWL total body weight loss >66% as from starting
weight preoperatively

Table 4b Relative telomere length after surgery including interaction and subgroup analyses

Parameter Adjusted for age and gender Adjusted for body weight Interactions Subgroup analyses

MetS Age BWL MetS (+/–) Age (≤/>50 yrs) TBWL (≤/>66%)

CD4+ RTL 0.04 0.03 0.19 0.17 0.01 0.14/0.23 0.14/0.18 0.03/0.10

CD8+ RTL 0.12 N/A 0.81 0.05 0.08 0.40/0.43 0.06/0.26 0.08/0.16

Numbers correspond to P-values, significances (P < 0.05) are depicted in bold. Generalized estimating equations were used, taking into account the
correlation between the repeated measures in the same patient. Outcome variables were added as continuous dependent variable, time of
measurement (expressed in months) as independent categorical variable. When outcome variables were not normally distributed, they were log-
transformed before analyses. Time before bariatric surgery was used as reference. All models were adjusted for age at baseline and gender. When a
statistically significant association was observed (P < 0.05 for time variable with Type 3 test), adjusted mean values were tested for statistically
significant difference

RTL relative telomere length, MetS metabolic syndrome, MetS+ presence of MetS, MetS– absence of MetS, Age ≤ or > 50 years, TBWL total
body weight loss > 66% as from starting weight preoperatively
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WHO II/III obesity and MetS, who are currently not
included in the guidelines to undergo bariatric surgery, may
benefit from surgery.

Changes in the T-cell-mediated adaptive immunity due
to obesity have been observed previously. Obesity increases
both the total numbers of CD4+ and CD8+ T cells [34]
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while causing a decrease in CD4+ regulatory T cells [21,
35, 36]. The effects of obesity on maturation of the T-cell
system has only been investigated in children, showing an
increase in more differentiated T cells [37]. In patients with
renal failure, uremia induces a severe depletion of naive
T cells and a shift to more differentiated T cells [10, 31, 38].
In our study, the observed detrimental effects of MetS are in
line with earlier findings, namely a depletion in the total
numbers of T cells as well as an increase in more differ-
entiated EMRA and CD28null T cells, which are associated
with aging. Presumably, the number of differentiated T cells
increases with age while the number of naive T cells
decreases [39]. This hypothesis could partially be confirmed
by the marked decrease of naive T cells and RTE due to
age. This was much more pronounced in the CD8+ T-cell
compartment, which is in line with the latest literature
showing that the immunological changes due to obesity
affect mostly CD8+ T cells [23]. Since T-cell immunity and
telomere length are linked to accelerated aging and age-
associated diseases, these pronounced effects of MetS on T-
cell immunity and telomere length suggest that patients with
MetS have a higher immunological age, making them more
prone to acquire infections and malignancies [10, 38].
Exactly these patients might especially benefit from bar-
iatric surgery to reduce the accelerated aging-associated
morbidity, in addition to weight-associated morbidity.

T-cell aging is associated with attrition of telomeres,
which can be easily measured in circulating T cells using
flow cytometry [13, 40]. The relationship between obesity
and telomere length in circulating leukocytes and T cells is
ambiguous [21, 25, 41, 42]. The additional effect of MetS
on telomere length has not yet been established before [41].
Here, we underscore the deleterious role of MetS on T-cell
aging by showing enhanced telomere attrition. Our study
used a flow cytometry-based assay (flowFISH) to measure
RTL, which has been shown to be more sensitive to detect
differences between populations in contrast with the quan-
titative PCR assay used by others [41].

The hypothesis that bariatric surgery halts or reverses
accelerated attrition of telomeres has been investigated
previously with inconclusive results [41, 42]. Formichi et al.
[42] showed in a comparable study design a significant
decline of telomere length at 3, 6, and 12 months post-
operatively. We too found a shortening of RTL at
12 months, but an increase of RTL in the first 6 months
postoperatively, which suggests a beneficial effect of sur-
gery on the T-cell immune system in the first postoperative
period. Further studies should focus on the changes seen in
the later months in order to understand the long-term effects
of surgery. Interestingly, we found a relation between an
increase in telomere length and percentage of total body
weight loss, which marks the decrease in body weight after
surgery as an important factor to measure the success rate of
the surgical treatment [26]. The decline in RTL could be
induced by the possible catabolic state induced by bariatric
surgery [42], however, does not explain the change of RTL
direction between 6 and 12 months and this should be
studied in more detail. Also, the RTL could be inversely
related to the number of CD28null T cells. As the RTL was
higher at time points 3 and 6 months postoperatively, the
numbers of CD28null cells were lower at these time points.
In contrast, the number of CD28null cells was higher at time
point 12 months, concomitant with a decline in RTL
(Table 3). CD28null T cells are described to have shorter
telomeres as compared with other T cells, possible due to
their higher cell division rate [10]. Therefore, the number of
CD28null T cells is suggested to be inversely linked to the
RTL. Further studies should highlight this possible relation
to confirm their association.

Bariatric surgery also induced changes in the T-cell
differentiation state, an observation that has not been made
previously. The increase in less-differentiated CM T cells in
contrast to the decrease in more differentiated EM and
CD28null T cells strongly direct toward reversal of the
accelerated T-cell aging initiated by bariatric surgery.
Again, high body weight loss might play a crucial role in
mitigating these effects, while MetS had a modest role.
Bariatric surgery is more effective than lifestyle or medical
interventions in the reduction in body weight, as well as in
reducing the metabolic complications of obesity [43]. The
reduction in body weight is determined by the total body
weight loss, and loss of >66% after 1 year is considered
successful [44]. The direct correlation between T-cell dif-
ferentiation and more pronounced total body weight loss
again highlights the importance of the vast reduction in
body weight that is induced by bariatric surgery. The only
result not matching with these effects is the significant
decline of CD4+ RTE after bariatric surgery. Hypotheti-
cally, this decline in RTE might be due to a reduction in
serum concentrations of interleukin 7 (IL-7). This cytokine
is important for (naive) T-cell homeostasis, and a reduction

Fig. 2 RTL after bariatric surgery (subgroup analysis). a CD4+ RTL
of the total obesity group significantly increased between time points
0–6 and 3–6 months postoperatively, after which RTL significantly
declined again between 6 and 12 months. b Between 3 and 6 months, a
significant increase in RTL of patients without MetS was seen, not
leading to an overall significant change in the total time period. cMetS
resulted in an overall decline in the first 12 months postoperatively; an
increase was seen between 0–6 and 3–6 months, and a decrease was
shown between 3–12 and 6–12 months. d No overall changes were
seen in the CD8+ RTL due to obesity, whereas subgroup analyses
showed a significant increase between 0–6 and 3–6 months, and a
decrease between 3 and 12 months. e No changes were seen in CD8+

RTL in the group without MetS, whereas the group with MetS (f) only
showed a significant decline between 6 and 12 months. RTL relative
telomere length, MetS metabolic syndrome. *P < 0.05. Time point 3,
n= 47; time point 6, n= 10, time point 12, n= 11
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in IL-7 has been seen in obese patients [45–47]. We have
previously shown a lower concentration of serum IL-7 in
patients with end-stage renal failure compared with healthy
controls and linked it to the decreased capacity in these
patients to maintain the naive T-cell compartment [48].
Whether these effects also hold true for obesity, bariatric
surgery, and MetS still needs to be elucidated.

Telomere attrition and T-cell differentiation status are
influenced by various, mostly non-adjustable factors such as
CMV-seropositivity and gender [13]. We confirm these data
by showing the enhanced T-cell differentiation status in
CMV-seropositive WHO II/III obese patients, as well as
male gender, which is in line with previous findings [39].
Whether CMV-seropositive and/or male patients might
benefit more from bariatric surgery remains unclear and
further studies should focus on the role of CMV and gender
on premature aging of morbidly obese patients.

There are several limitations attached to this study. These
include the small sample size, especially the selected group
of patients investigated after surgery, which could conceal
effects on different subpopulations within our cohort. Also,
the study was conducted at a single center. Despite the small
sample sizes, significant differences could be detected. As
we measured RTL in the total circulating CD4+ and CD8+

T-cell compartments, the effects seen in RTL might be the
result of shifts in specific T-cell subsets as seen for the
significant increase in CD28null T cells due to MetS. Further
studies should identify changes in RTL within these specific
subsets to correlate these findings. Finally, not all effects of
obesity are reflected in the circulation and therefore inves-
tigating the effects on the corner stone of obesity, the fat
tissue itself, will allow the association between the effect of
excess of fat tissue and changes seen in the immune system.

In conclusion, we show that MetS in obese patients
causes accelerated telomere attrition and enhanced T-cell
differentiation in circulating CD4+ and CD8+ T cells. This
strongly suggests accelerated aging of the T-cell compart-
ment. Shortening of telomeres and enhanced T-cell differ-
entiation state are temporarily reversed during the first
6 months after bariatric surgery and are associated with
percentage of body weight loss. These data suggest that
obese patients with MetS are at risk for accelerated aging of
the T-cell immune system and might benefit from bariatric
surgery at an earlier stage.
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