602 research outputs found

    New insight into cataract formation -- enhanced stability through mutual attraction

    Get PDF
    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let

    Point Source Extraction with MOPEX

    Full text link
    MOPEX (MOsaicking and Point source EXtraction) is a package developed at the Spitzer Science Center for astronomical image processing. We report on the point source extraction capabilities of MOPEX. Point source extraction is implemented as a two step process: point source detection and profile fitting. Non-linear matched filtering of input images can be performed optionally to increase the signal-to-noise ratio and improve detection of faint point sources. Point Response Function (PRF) fitting of point sources produces the final point source list which includes the fluxes and improved positions of the point sources, along with other parameters characterizing the fit. Passive and active deblending allows for successful fitting of confused point sources. Aperture photometry can also be computed for every extracted point source for an unlimited number of aperture sizes. PRF is estimated directly from the input images. Implementation of efficient methods of background and noise estimation, and modified Simplex algorithm contribute to the computational efficiency of MOPEX. The package is implemented as a loosely connected set of perl scripts, where each script runs a number of modules written in C/C++. Input parameter setting is done through namelists, ASCII configuration files. We present applications of point source extraction to the mosaic images taken at 24 and 70 micron with the Multiband Imaging Photometer (MIPS) as part of the Spitzer extragalactic First Look Survey and to a Digital Sky Survey image. Completeness and reliability of point source extraction is computed using simulated data.Comment: 20 pages, 13 Postscript figures, accepted for publication in PAS

    Identification of structure in condensed matter with the topological cluster classification

    Full text link
    We describe the topological cluster classification (TCC) algorithm. The TCC detects local structures with bond topologies similar to isolated clusters which minimise the potential energy for a number of monatomic and binary simple liquids with m13m\leq13 particles. We detail a modified Voronoi bond detection method that optimizes the cluster detection. The method to identify each cluster is outlined, and a test example of Lennard-Jones liquid and crystal phases is considered and critically examined.Comment: 28 pages, 28 figure

    Gravitational Wilson Loop and Large Scale Curvature

    Full text link
    In a quantum theory of gravity the gravitational Wilson loop, defined as a suitable quantum average of a parallel transport operator around a large near-planar loop, provides important information about the large-scale curvature properties of the geometry. Here we shows that such properties can be systematically computed in the strong coupling limit of lattice regularized quantum gravity, by performing a local average over rotations, using an assumed near-uniform measure in group space. We then relate the resulting quantum averages to an expected semi-classical form valid for macroscopic observers, which leads to an identification of the gravitational correlation length appearing in the Wilson loop with an observed large-scale curvature. Our results suggest that strongly coupled gravity leads to a positively curved (De Sitter-like) quantum ground state, implying a positive effective cosmological constant at large distances.Comment: 22 pages, 6 figure

    Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization

    Get PDF
    The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size probability density function. Finally, we have applied our approach to the distributions resulting from solid phase crystallization under isochronal heating conditions

    New Monte Carlo method for planar Poisson-Voronoi cells

    Full text link
    By a new Monte Carlo algorithm we evaluate the sidedness probability p_n of a planar Poisson-Voronoi cell in the range 3 \leq n \leq 1600. The algorithm is developed on the basis of earlier theoretical work; it exploits, in particular, the known asymptotic behavior of p_n as n\to\infty. Our p_n values all have between four and six significant digits. Accurate n dependent averages, second moments, and variances are obtained for the cell area and the cell perimeter. The numerical large n behavior of these quantities is analyzed in terms of asymptotic power series in 1/n. Snapshots are shown of typical occurrences of extremely rare events implicating cells of up to n=1600 sides embedded in an ordinary Poisson-Voronoi diagram. We reveal and discuss the characteristic features of such many-sided cells and their immediate environment. Their relevance for observable properties is stressed.Comment: 35 pages including 10 figures and 4 table

    Asymptotic statistics of the n-sided planar Poisson-Voronoi cell. I. Exact results

    Full text link
    We achieve a detailed understanding of the nn-sided planar Poisson-Voronoi cell in the limit of large nn. Let p_n{p}\_n be the probability for a cell to have nn sides. We construct the asymptotic expansion of logp_n\log {p}\_n up to terms that vanish as nn\to\infty. We obtain the statistics of the lengths of the perimeter segments and of the angles between adjoining segments: to leading order as nn\to\infty, and after appropriate scaling, these become independent random variables whose laws we determine; and to next order in 1/n1/n they have nontrivial long range correlations whose expressions we provide. The nn-sided cell tends towards a circle of radius (n/4\pi\lambda)^{\half}, where λ\lambda is the cell density; hence Lewis' law for the average area A_nA\_n of the nn-sided cell behaves as A_ncn/λA\_n \simeq cn/\lambda with c=1/4c=1/4. For nn\to\infty the cell perimeter, expressed as a function R(ϕ)R(\phi) of the polar angle ϕ\phi, satisfies d2R/dϕ2=F(ϕ)d^2 R/d\phi^2 = F(\phi), where FF is known Gaussian noise; we deduce from it the probability law for the perimeter's long wavelength deviations from circularity. Many other quantities related to the asymptotic cell shape become accessible to calculation.Comment: 54 pages, 3 figure

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Edge detection in microscopy images using curvelets

    Get PDF
    BACKGROUND: Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. RESULTS: We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. CONCLUSION: The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy
    corecore