108 research outputs found

    Ice-water dynamics over a land-terminating sector of western Greenland

    Get PDF
    In this dissertation I investigate the dynamics of a land-terminating reach of the west Greenland ice sheet through three projects utilizing unique field data and modeling experiments. In Chapter 1 I use in-situ water pressure data and numerical modeling to elucidate the conceptual model of subglacial hydrologic drainage beneath Greenland. Measurements in boreholes drilled to the ice sheet bed along a transect in the ablation zone reveal water pressures that question the stability of water-draining conduits. I apply numerical techniques to model transient evolution of subglacial conduits and show that seasonal growth of such features is unsupported in the ice sheet interior. Low potential gradients that drive energy availability to melt channel walls limit conduit growth. This elucidates the importance of other processes in facilitating seasonal development of the subglacial hydrologic system in the interior setting. In Chapter 2 I investigate the effect of thermal boundary conditions on the thermo-mechanical state of western Greenland. I propose new boundary fields from measurements of temperature near the surface and basal heat flux beneath the ice sheet. Comparison of these observation-based fields with model-driven datasets suggests that model-derived basal heat flux is too high, and surface temperatures too low in the study area. By applying different boundary conditions to a thermo-mechanically coupled ice sheet model I show that thermal conditions at the ice/bedrock interface critically depend on the boundary conditions at both the surface and bed. Unrealistically cold conditions are induced if basal heat flux alone is driven by observations. Warmer surface conditions consistent with observations are sufficient to reintroduce melted conditions at the bed, elucidating the importance of the surface boundary in thermo-mechanical model exploration. In Chapter 3 I address the processes responsible for inducing a region of anomalously low driving stress that is evident in west-southwest Greenland. I show that the feature corresponds to a consistent reduction in surface slope rather than a strong bedrock topographic expression. Kinematic wave experiments show that the diffusive nature of the ice sheet renders the development of such a feature infeasible from surface mass balance perturbations. Low driving stress necessitates a change in dynamics and I surmise it is this variation in basal sliding that is an important factor in inducing changes in the surface slope, and thus the driving stress

    Borehole Measurements of Dynamic Basal Drainage Adjustments During Sliding Accelerations: Bench Glacier, Alaska

    Get PDF
    Artificial perturbations of borehole water levels, or slug tests, are a commonly employed means of characterizing the glacier hydrologic system. Results documenting the influence of slug testing on a field of boreholes and its change with time, however, are scarce. Slug tests were performed on Bench Glacier, AK in 21 boreholes over three field seasons during an annual late spring glacier speed up event. Fifty four slug tests were conducted, with water level monitoring in up to five boreholes adjacent to the slugged borehole. Seven of the slug tests were performed in conjunction with dye dispersion tests to identify water pathways within the slugged borehole following perturbation. Underdamped and overdamped slug test responses show a high degree of connectivity among boreholes connected via the glacier bed. The nature and degree of connectivity is temporally variable, suggesting that the drainage network at the bed is highly dynamic on time and space scales of hours and 10’s of meters, respectively. The changes we document in slug test responses over time and space can be used to constrain explanations for the cause of the underdamped response. Examination of the underdamped response necessitates an understanding of the process(es) acting as the spring to produce the oscillatory water level behavior. We propose that coherent air packages are a likely means of producing the compliance needed to generate the underdamped slug test response, and that these air packages may exist within the glacier at the tips of subglacially propagated fractures. Synthesis of slug testing with other methods of study, such as video observation and dye tracing, helps lend insight into the governing processes at the glacier bed

    Compressional and EM Wave Velocity Anisotropy in a Temperate Glacier Due to Basal Crevasses, and Implications for Water Content Estimation

    Get PDF
    We have conducted a series of experiments designed to investigate elastic and electromagnetic (EM) velocity anisotropy associated with a preferentially aligned fracture system on a temperate valley glacier in south-central Alaska, USA. Measurements include a three-dimensional compressional wave (P-wave) seismic reflection survey conducted over a 300m × 300m survey patch, with uniform source grid and static checkerboard receiver pattern. Additionally, we acquired a multi-azimuth, multi-offset, polarimetric ground-penetrating radar (GPR) reflection experiment in a wagon-wheel geometry with 94° of azimuthal coverage. Results show azimuthal variation in the P-wave normal-moveout velocity of \u3e3% (3765 and 3630ms-1 in the fast and slow directions respectively) and difference of nearly 5% between the fast (0.164mns-1) and slow (0.156mns-1) EM velocities. Fracture orientations estimated from the GPR and seismic velocity data are consistent and indicate a preferred fracture orientation that is 30–45° oblique to glacier flow; these measurements agree with borehole observations. Anisotropic analysis of the polarimetric data gives a single volumetric water content estimate of 0.73 ± 0.11%. We conclude that meaningful estimates of physical properties in glaciers based on EM or seismic velocity measurements require collecting data such that the presence of anisotropy can be evaluated and an anisotropic analysis employed when necessary

    Sensitivity of the Frozen/Melted Basal Boundary to Perturbations of Basal Traction and Geothermal Heat Flux : Isunnguata Sermia, Western Greenland

    Get PDF
    A full-stress, thermomechanically coupled, numerical model is used to explore the interaction between basal thermal conditions and motion of a terrestrially terminating section of the west Greenland ice sheet. The model domain is a two-dimensional flowline profile extending from the ice divide to the margin. We use data-assimilation techniques based on the adjoint model in order to optimize the basal traction field, minimizing the difference between modeled and observed surface velocities. We monitor the sensitivity of the frozen/melted boundary (FMB) to changes in prescribed geothermal heat flux and sliding speed by applying perturbations to each of these parameters. The FMB shows sensitivity to the prescribed geothermal heat flux below an upper threshold where a maximum portion of the bed is already melted. The position of the FMB is insensitive to perturbations applied to the basal traction field. This insensitivity is due to the short distances over which longitudinal stresses act in an ice sheet

    Air compression as a mechanism for the underdamped slug test response in fractured glacier ice

    Get PDF
    Artificial perturbations of borehole water levels, known as slug tests, are a useful means of characterizing the glacier hydrologic system. Slug tests were performed on Bench Glacier, Alaska, in 21 boreholes over three field seasons during the transition from a winter to a summer drainage mode. Fifty-four slug tests were conducted, with water level monitoring in up to five boreholes adjacent to the slugged borehole. Seven of the slug tests were performed in conjunction with dye dispersion tests to identify water pathways within the slugged borehole following perturbation. Nearly 60% of monitored adjacent boreholes showed a hydraulic connection to the slugged borehole via the glacier bed. The nature and degree of connectivity was temporally variable, suggesting that the drainage network at the bed was highly dynamic on a daily timescale and spatial scale of tens of meters. The variability of slug test responses over time and space limit the feasibility of six alternative explanations for the oscillatory water level behavior characteristic of the underdamped response. We propose a seventh, that is, that coherent air packages are a reasonable means of producing the compliance needed to generate the underdamped slug test responses on Bench Glacier, and that these air packages may exist within the glacier at the tips of subglacially propagated fractures

    Thermal boundary conditions on western Greenland: Observational constraints and impacts on the modeled thermomechanical state

    Get PDF
    The surface and basal boundary conditions exert an important control on the thermodynamic state of the Greenland Ice Sheet, but their representation in numerical ice sheet models is poorly constrained due to the lack of observations. Here we investigate a land-terminating sector of western Greenland and (1) quantify differences between new observations and commonly used boundary condition data sets and (2) demonstrate the impact of improved boundary conditions on simulated thermodynamics in a higher-order numerical flow model. We constrain near-surface temperature with measurements from two 20mboreholes in the ablation zone and 10m firn temperature from the percolation zone. We constrain basal heat flux using in situ measurement in a deep bedrock hole at the study area margin and other existing assessments. To assess boundary condition influences on simulated thermal-mechanical processes, we compare model output to multiple full-thickness temperature profiles collected in the ablation zone.Our observation-constrained basal heat flux is 30mW m2 less than commonly used representations. In contract, measured near-surface temperatures are warmed than common surface warmer than common surface temperature data sets by up to 15 degrees C. Application of lower basal heat flux increases a model cold bias compared to the measured temperature profiles and causes frozen basal conditions across the ablation zone. Temperate basal conditions are reestablished by our warmer surface boundary. Warmer surface ice and firn can introduce several times more energy to the modeled ice mass than what is lost at the bed from reduced basal heat flux, indicating that the thermomechanical state of the ice sheet is highly sensitive to near-surface effects

    Inverse-kinematics one-neutron pickup with fast rare-isotope beams

    Get PDF
    New measurements and reaction model calculations are reported for single neutron pickup reactions onto a fast \nuc{22}{Mg} secondary beam at 84 MeV per nucleon. Measurements were made on both carbon and beryllium targets, having very different structures, allowing a first investigation of the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and Îł\gamma-ray spectroscopy of the projectile-like reaction residue for final-state resolution, that permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the \nuc{12}{C} (\nuc{22}{Mg},\nuc{23}{Mg}+\gamma)X reaction largely proceeds as a direct two-body reaction, the neutron transfer producing bound \nuc{11}{C} target residues. The corresponding reaction on the \nuc{9}{Be} target seems to largely leave the \nuc{8}{Be} residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei, and also their expected sensitivity to neutron high-â„“\ell (intruder) states which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.Comment: 8 pages, 5 figure

    Correlated Prompt Fission Data in Transport Simulations

    Full text link
    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and Îł\gamma-ray~observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and \gray~spectra, angular distributions of the emitted particles, nn-nn, nn-Îł\gamma, and Îł\gamma-Îł\gamma~correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA~and CGMF~codes have been developed to follow the sequential emissions of prompt neutrons and Îł\gamma-rays~from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and Îł\gamma~emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the Îł\gamma-ray~strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. (See text for full abstract.)Comment: 39 pages, 57 figure files, published in Eur. Phys. J. A, reference added this versio

    Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions

    Get PDF
    The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u at the NSCL. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations - based on the use of eikonal dynamics and sd-shell-model structure amplitudes.Comment: Accepted for publication in Physical Review C (Rapid Communication

    Elastic breakup cross sections of well-bound nucleons

    Get PDF
    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.Comment: Phys. Rev. C 2014 (accepted
    • …
    corecore