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Meierbachtol, Toby, PhD, Summer 2014     Geosciences 

 

Ice Dynamics over a Land-Terminating Sector of Western Greenland 

 

Chairperson:  Dr. Joel T. Harper 

 

In this dissertation I investigate the dynamics of a land-terminating reach of the west 

Greenland ice sheet through three projects utilizing unique field data and modeling 

experiments.  

 

In Chapter 1 I use in-situ water pressure data and numerical modeling to elucidate the 

conceptual model of subglacial hydrologic drainage beneath Greenland. Measurements in 

boreholes drilled to the ice sheet bed along a transect in the ablation zone reveal water 

pressures that question the stability of water-draining conduits. I apply numerical 

techniques to model transient evolution of subglacial conduits and show that seasonal 

growth of such features is unsupported in the ice sheet interior. Low potential gradients 

that drive energy availability to melt channel walls limit conduit growth. This elucidates 

the importance of other processes in facilitating seasonal development of the subglacial 

hydrologic system in the interior setting. 

 

In Chapter 2 I investigate the effect of thermal boundary conditions on the thermo-

mechanical state of western Greenland. I propose new boundary fields from 

measurements of temperature near the surface and basal heat flux beneath the ice sheet. 

Comparison of these observation-based fields with model-driven datasets suggests that 

model-derived basal heat flux is too high, and surface temperatures too low in the study 

area. By applying different boundary conditions to a thermo-mechanically coupled ice 

sheet model I show that thermal conditions at the ice/bedrock interface critically depend 

on the boundary conditions at both the surface and bed. Unrealistically cold conditions 

are induced if basal heat flux alone is driven by observations. Warmer surface conditions 

consistent with observations are sufficient to reintroduce melted conditions at the bed, 

elucidating the importance of the surface boundary in thermo-mechanical model 

exploration.     

 

In Chapter 3 I address the processes responsible for inducing a region of anomalously 

low driving stress that is evident in west-southwest Greenland. I show that the feature 

corresponds to a consistent reduction in surface slope rather than a strong bedrock 

topographic expression. Kinematic wave experiments show that the diffusive nature of 

the ice sheet renders the development of such a feature infeasible from surface mass 

balance perturbations. Low driving stress necessitates a change in dynamics and I 

surmise it is this variation in basal sliding that is an important factor in inducing changes 

in the surface slope, and thus the driving stress. 
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INTRODUCTION TO THE DISSERTATION 

 

 Until recently, general scientific consensus was that the vast spatial dimension of 

the Greenland Ice Sheet limited its response time to millennia, in contrast to the smaller 

mountain counterpart [Truffer and Fahnestock, 2007]. However, the past decade of 

research has invoked a paradigm shift with respect to Greenland’s behavior and response 

to external forcings. The ice sheet displays accelerations on time scales as short as diurnal 

[Hoffman et al., 2011; Bartholomew et al., 2012], velocity increases propagate >100 km 

from the ice sheet edge [Palmer et al., 2011], and marine termini can exhibit kilometer-

scale changes in position over just a few years [Howat et al., 2007; Joughin et al., 2010]. 

The global implications of Greenland’s behavior in response to a changing climate 

provide motivation for many a research article. 

Less publicized, however, has been the importance of process-level developments in 

understanding to directly inform design decisions for long-lifespan (several hundreds of 

thousands of years) structures in locations susceptible to glaciation. This is of immediate 

significance in the northern latitude countries of Sweden, Finland, and Canada, who are 

responsibly planning for the long term disposal of radiotoxic material in their respective 

countries in deep geological repositories. Each of the aforementioned countries have 

experienced glaciation events over historical timescales and are designing deep 

geological repositories for spent nuclear fuel under the assumption that future glaciation 

events are likely over the time scales relevant for waste decay. As such, the impact of 

glaciation on the conditions surrounding the repository is of importance in considering 

structure integrity and contaminant transport during the design process.  
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Specifically, perturbations at the ice-bedrock boundary that affect the groundwater 

flow field and chemistry are of critical importance. In the absence of ice sheet conditions 

at the repository sites, Greenland provides an ideal present-day analogue to study 

conditions relevant to plausible future scenarios in these high-latitude countries. Transfer 

of processes in the Greenland setting help to reduce uncertainties and provide a stronger 

scientific basis for the treatment of glacial impacts on safety assessments at the repository 

sites [SKB, 2011; NWMO, 2012; Posiva, 2012]. 

The presence of basal water, configuration of the drainage system and pressure at 

which it flows have a strong influence on the ice-bedrock boundary that drives 

groundwater dynamics. The presence of basal water depends on the thermal regime at the 

bed, and hence ice temperature. Ice temperature is controlled by ice flow dynamics and 

conditions at/near the surface. Clearly, a holistic understanding of ice sheet processes is 

necessary in order to adequately constrain processes occurring at the bottom of the ice 

sheet and conceptualize them in such a way to inform idealized future scenarios.     

In Greenland, observational constraints on the basal character and flow dynamics of 

the ice sheet are limited. To elucidate the structure and evolution of the subglacial 

hydrologic network, and the role that water plays in dictating ice dynamics in the 

Greenland setting, a team from the University of Montana and University Wyoming 

carried out annual field campaigns from 2010 – 2013. This field work formed a 

significant component of my dissertation research through which our team gathered water 

pressure, ice temperature, and surface velocity data. We collected in-situ data in 

boreholes which we drilled to the ice sheet bed using hot water techniques. Over the 

course of three seasons we drilled a cumulative total of 10 km spread across multiple 
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drilling sites in ice up to 820 m thick. Immersion in the field provided perspective, 

sparked ideas, and allowed me to place data in a physical context. Thus, the field work 

heavily shaped the research that follows here by yielding unique data, and also by 

providing a sense of place and scale within which to frame my thinking.     

In my dissertation I elucidate the dynamics of a land-terminating reach of western 

Greenland in three chapters. Because sub-, en-, and supraglacial ice sheet processes are 

tightly coupled, the chapters encompass work focused on the ice sheet bed, within the ice 

mass, and at the ice surface. Each chapter has either been published, is in review, or is in 

an advanced state formatted for publication. 

In Chapter 1 I utilize water pressure measurements in boreholes and numerical 

modeling to investigate the stability of water draining conduits and propose amendments 

to our conceptual model of subglacial drainage through the ice sheet ablation zone. 

Chapter 1 has been published in Science (doi: 10.1126/science.1235905). In Chapter 2 I 

leverage measurements of ice temperature and basal heat flux to constrain surface and 

bed thermal boundary conditions by observation. I then compare these data-based fields 

with commonly used boundary conditions and investigate the impact of the discrepancy 

on the thermo-mechanical state of western Greenland from a thermo-mechanically 

coupled ice sheet model. Chapter 2 has been submitted to the Journal of Geophysical 

Research: Earth Surface, and is currently in review. In Chapter 3, I investigate processes 

influencing a region of anomalous driving stress in western Greenland. Driving stress is a 

first-order driver of ice flow dynamics. Through kinematic wave experiments I 

investigate the plausibility that the anomaly results from surface mass balance 

perturbations. I also assess the likely partitioning of ice deformation and sliding to infer 
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longitudinal gradients in basal motion, and their role in development of the driving stress 

anomaly. It is formatted for submission to The Journal of Glaciology.  

I have also included, as an Appendix, developing work from in-situ stress testing of 

the subglacial hydrological system which I term ‘impulse tests’. This work is currently 

under analysis and will benefit from additional testing which will build and strengthen 

the overall dataset. I plan to perform more impulse tests in additional Greenland field 

campaigns starting in July, 2014. 

In addition to the work presented in these three chapters I have been fortunately 

involved in additional research that has resulted in publication during my tenure as a 

doctoral student. These publications developed from additional ice sheet modeling 

research on Greenland, as well as from field work performed on Bench Glacier, Alaska. 

The publications include: 

Brinkerhoff, D J, Meierbachtol, T W, Johnson, J V, Harper, J T. 2011. Sensitivity of the 

frozen/melted basal boundary to perturbations of basal traction and geothermal heat flux: 

Isunnguata Sermia, western Greenland. Annals of Glaciology, 52(59), 43-50. 

 

Harper, J T, Bradford, J H, Humphrey, N F, Meierbachtol, T W. 2010. Vertical extension 

of the subglacial drainage system into basal crevasses. Nature, 467(7315), 579-582. 

 

Bradford, J H, Nichols, J, Harper, J T, Meierbachtol, T. 2013. Compressional and EM 

wave anisotropy in a temperate glacier due to basal crevasses, and implications for water 

content estimation. Annals of Glaciology, 54(64), 168-178. 
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CHAPTER 1 

BASAL DRAINAGE SYSTEM RESPONSE TO INCREASING SURFACE MELT 

ON THE GREENLAND ICE SHEET 

 

Abstract:   

Surface melt water reaching the bed of the Greenland ice sheet imparts a fundamental 

control on basal motion. Sliding speed depends on ice/bed coupling dictated by the 

configuration and pressure of the hydrologic drainage system. In-situ observations in a 

four-site transect containing 23 boreholes drilled to Greenland’s bed reveal basal water 

pressures unfavorable to water-draining conduit development extending inland beneath 

deep ice. This finding is supported by numerical analysis based on realistic ice sheet 

geometry. Slow melt-back of ice walls limits conduit growth, inhibiting their capacity to 

transport increased discharge. Key aspects of current conceptual models for Greenland 

basal hydrology, derived primarily from study of mountain glaciers, appear bounded to a 

portion of the ablation zone near the ice sheet margin. 
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Main Text:   

Measurements on the Greenland ice sheet (GrIS) show widespread meltwater forcing 

on velocity, impacting marine (1, 2) and terrestrially terminating regions (2–10) many 

tens of kilometers inland from the margin (4, 5, 10). During the summer melt season, 

velocities commonly increase up to 100% or more above winter averages (2, 3, 5–10), 

and can exceed 300% (4, 10). However, future response of the ice sheet to enhanced 

surface melt intensity, longer melt seasons, extended melt zones, and increasing high-

melt or rainfall events is unclear with apparently conflicting possibilities. Positive 

feedbacks may be limited as observations show velocity peaks in the melt season, and 

diminishes later in the summer while ablation increases (3, 10). Further, years with high 

ablation display smaller average seasonal speed-ups near the ice sheet margin (6). 

Alternatively, longer surface melt seasons in a warmer climate enhance ice sheet motion 

due to more short term accelerations from melt pulses repeatedly overwhelming the 

subglacial system (4, 11). The nature of changes in sliding motion impact sea level by 

dictating the extent to which ice is drawn to lower elevations where melt rates are high 

and ice is discharged through calving termini. 

The degree to which meltwater input influences sliding dynamics is driven by the 

disparity between the rate-of-change of water input and the capacity of the subglacial 

drainage network (4, 11, 12). Observations on the GrIS show the basal network evolves 

through the melt season, with enhanced efficiency extending upwards of 50 km inland 

from the ice sheet margin (13, 14). The mechanism driving evolution is commonly 

interpreted to follow the smaller mountain glacier conceptual model, whereby an 

inefficient network of linked cavities switches to a system of efficient channels by 
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melting of the overlying ice roof. The sensitivity to sustained meltwater input is reduced 

as the inefficient network evolves to a high capacity channelized system, but short term 

perturbations still overwhelm even these efficient drainage features. Basal pressure 

measurements, which are restricted in time and space (15–18), and dye tracing 

experiments along the ablation zone (14) provide the only direct measurements of 

subglacial hydrologic conditions to date. Whereas basal pressure observations have 

proven indispensable for elucidating hydrologic processes in the mountain glacier setting, 

scarce observational datasets from the GrIS so far limit extension of these processes to 

the ice sheet scale with confidence. Here, using in-situ water pressure measurements in 

boreholes drilled along a 34 km transect in western GrIS and modeling, we test the 

hypothesis that basal conduit melt processes drive formation of a channelized network 

across the drainage regime.  

During the summers of 2010 – 2012 we used hot water methods to drill 23 boreholes 

to the ice sheet bed at sites along an E-W transect in western Greenland (Fig. 1). 

Borehole sites extend inland from the margin of terrestrially terminating Isunnguata 

Sermia, and represent a range of settings from shallow marginal conditions with 100-150 

m ice depth (hereafter referred to as S1) to 34 km deep in the interior where ice thickness 

is >800 m (S4) (19). Sites also sample a bedrock trough (S3) and adjacent shallow area 

located 17 km inland (S2). Prior to borehole refreezing, we performed hydrological 

impulse tests (19), and instrumented boreholes with basal water pressure sensors for long 

term (up to >1 year) monitoring. 

We measured distinctive spatial variability in borehole water pressure behavior at the 

ice sheet margin (S1) compared to deeper in the interior (S2 – S4). Of the 13 holes drilled 
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at S1, six immediately connected to the active subglacial system as evidenced by rapid 

water level drops when the drill intersected the bed (Fig. S1). Basal water pressures in 

these holes suggest a mix of distributed and channelized drainage during the summer 

melt season. Daily water pressure swings exceeding 70% of ice overburden (OB) (Fig. 2) 

indicate borehole connection to a highly efficient, channelized system (20). In other 

holes, small-amplitude variations superimposed on steady high pressure suggest limited 

drainage capacity (Fig. 2), which is corroborated by the slow accommodation of water 

introduced to holes during impulse testing. Similar variability over high mean pressures 

has been interpreted to reflect a distributed drainage configuration (21, 22).   

All 10 boreholes located 17 – 34 km from the margin experienced 50 – 125 m water 

level drops (12 – 17% OB equivalent (Fig. S1)) when the drill intersected the bed, 

indicating connection to an active drainage system. At S2 and S4, pressure records are 

similar to those boreholes near the ice sheet edge interpreted to be connected to a linked 

cavity network. Water pressures 34 km inland at S4 remained between 88 – 94% OB 

during the late melt season (day-of-year 200-240) with diurnal variations limited to 4% 

OB or less. Pressures at S2 were steadily between 82 – 92% OB with small variations of 

similar magnitude as S4 (Fig. 2). In the adjacent trough (S3), hydraulic connections 

between boreholes were evident over 20 m length scales, but long term connectivity to a 

broader drainage system appears to be transient. Water level behavior at S3 periodically 

switched from steadily near or above 100% OB, to exhibiting diurnal variations up to 

14% OB. We interpret this behavior to reflect temporary establishment and loss of 

connections along the bed.  
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Consistent with existing observations to the north near Jakobshavn Isbræ (17, 18), we 

see no direct evidence of high capacity basal melt channels in our inland (17 and 34 km 

from the ice sheet margin) boreholes as manifested by reduced mean pressures and large 

amplitude diurnal pressure variations. However, limited sample locations do not preclude 

the existence of such basal pathways, motivating comparison of basal pressure conditions 

through numerical analysis. Following previous theoretical development of steady state 

conduit dynamics (23), we model conduit conditions on the ice sheet domain under a 

range of constant discharge values (19). We find that steady conduit pressures less than 

70% OB are limited to <10 km from the margin and increase towards overburden further 

inland (Fig. 3). Near the ice sheet margin, expected conduit pressures lower than our 

distributed measurements reinforce previous theory that water is driven in to these low 

pressure features, enhancing their stability (11). The reverse is true away from the 

margin. Pressure differentials between our inland measurements and conduit theory are 

diminished, and measured pressures at S4 are lower than expected in conduits. In this 

interior setting, water driven away from high pressure conduits would feed the distributed 

network represented by our measurements, resulting in conduit instability and collapse.  

Steady state analysis neglects variable input as surface melt water routed to the bed 

through discrete moulins undergoes seasonal (24) and diurnal (25) change. We therefore 

extend analysis to include transient forcing by implementing a conduit melt-closure 

model (19). Creep closure from ice deformation and opening from melt-back of conduit 

walls determine cross-sectional area, and turbulent flow is simulated through the semi-

circular conduit. We focus here on two test cases representing a conduit near the margin 

(3 km length) and extending to the drainage interior (40 km) to illustrate geometric 
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effects on conduit growth via melting. We assume a pre-existing conduit and force the 

system with diurnally varying discharge. Melt-back of the ice walls near the ice sheet 

margin promotes basal conduit growth (Fig. 3) so that changes in input are rapidly 

accommodated, thereby preventing elevated pressures. In contrast, interior conduit melt 

rates are >95% slower than creep closure. Stunted conduit geometry from slow growth 

can only accommodate a fraction of the imposed input and at pressures largely 

constrained to 100% OB. The imposed input range (1–3 m
3
 s

-1
) requires a period of 

variation that is unreasonably long (90 days) to be fully accommodated by the conduit 

(supplementary online text).   

Enhanced conduit closure under thicker ice has been highlighted as a driving 

difference between alpine and ice sheet subglacial hydraulics (10, 12). However, our 

pressure records imply maximum closure rates are similar at marginal sites and in the 

interior. This is supported by our numerical test cases despite ice thickness at the inland 

setting that is 3x the margin. Instead, low basal conduit melt rates limit channel evolution 

at inland areas of the ice sheet. Melting of conduit walls is a function of discharge and 

hydraulic gradient. Steep surface slopes are common in both alpine glaciers and near the 

ice sheet margin, leading to large hydraulic gradients at the glacier bed and hence high 

basal conduit melt rates. In contrast, much of the ice sheet ablation zone away from the 

margin is characterized by muted surface slopes which limit conduit growth through 

dissipative heating effects.  

Asymmetry between conduit melt-back and closure rates dictates that basal conduits 

can only be sustained by generally steady discharge conditions. Despite variable surface 

input, it is possible that modulation of discharge through basal or englacial water storage 
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and release could facilitate near-steady basal flow. Other work suggests reversing 

hydraulic gradients enable an adjacent network to temporarily store water driven out of 

conduits during periods of high flux, and return it during times of low flow (20, 26). 

However, that model assumes preexisting basal conduits. Our results suggest basal melt 

rates are too slow to fully establish a channelized network during a single summer season 

(supplementary online text). Further, our measurements of the basal pressure regime 

question interior conduit stability under steady flow conditions.   

Our data and numerical experiments do not support widespread growth of a conduit 

network in the drainage interior by ice-wall melt processes alone. Nevertheless, velocity 

interpretations (10), proglacial stream measurements (13), and dye tracing experiments 

(14) provide evidence for seasonally increasing drainage efficiency away from the 

margin. This implies other physical processes at the bed are more important than 

previously recognized in regions where gradient-driven basal melting is muted. We 

surmise that, towards the ice sheet interior, a network of efficient, distributed pathways 

develops in contrast to large melt channels. Accelerated sliding through the melt season 

may increase pathway discharge by enlarging space on the lee sides of bed asperities, 

allowing such a network to transport significant quantities of water (supplementary 

online text). Regardless, any working model of GrIS subglacial hydrology must reconcile 

observations of both pressure and drainage efficiency under relaxed gradient regimes 

atypical of mountain glaciers.  

Accurate representation of processes driving behavior of ice/water interactions at the 

ice sheet bed is crucial to understanding drainage system evolution and our ability to 

quantify the impact of surface meltwater input on ice sheet acceleration. Our results 
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caution against the direct transfer of processes from the alpine setting to ice sheet interior 

where geometric differences are accentuated. Future efforts to assess drainage dynamics 

away from the ice sheet margin should focus on developing additional mechanisms for 

growing drainage system efficiency, such as sliding over bedrock. The importance of 

processes in this interior regime is paramount considering that surface melt extent and 

intensity have increased over the GrIS during the observational era (27, 28) and future 

warming is projected to expand melt intensity towards the ice sheet interior.   
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Figures: 

 
 

Fig. 1. Site setting with bedrock topography from ICEBRIDGE airborne radar (29) 

extending east from Isunnguata Sermia. Drill sites are denoted by red dots with site 

number and ice thickness for reference.  
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Fig. 2.  Characteristic long term water pressure records at sites 1 – 4 as fraction of 

overburden. Site S1 (D) showed significant spatial variability with some holes showing 

large diurnal variations (black line) while others showed small amplitude variations at 

high pressure (red line). Slow water level increase during day of year 205 – 210 at S1 

(black line) may represent slow closure of an efficient connection or advection of the 

borehole away from such a hydrologic feature. Boreholes were drilled over the course of 

3 field seasons, thus presented pressure records do not all span the same time period (drill 

year is shown in panel box). Head as fraction of overburden pressure ( obh ) is calculated 

as 
ii

ww
ob

h

h
h




 where wh is head equivalent of water pressure measured in the borehole, ih

is ice thickness, and w and i are water and ice densities respectively.  

 

 

 



 21 

 
Fig. 3.  Simulation results from steady state conduit analysis (A), and transient 

experiments (B-D).  Steady state conduit simulations were performed for an envelope of 

discharges ranging from a low of 1 m
3
 s

-1
 (solid red line in (A)) to an upper limit of 300 

m
3
 s

-1
 (dashed red line) guided by proglacial measurements (4). Mean pressures 

encompassing day-of-year 200 – 240 from distributed network measurements are shown 

by black dots; vertical bars denote maximum and minimum pressures during the time 

period. Transient experiments are forced with diurnally varying input (red line in (B)).  

Conduit discharge (B), cross sectional area (C), and head as fraction of OB (D) are 

displayed at 3 km and 40 km for the margin (dashed) and inland (solid black line) 

scenarios respectively. Margin and inland scenarios are assumed to be representative of 

conditions expected near S1 and S4. 
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Supporting Online Material for: 

 

Basal Drainage System Response to Increasing Surface Melt on the Greenland Ice 

Sheet 

 

T. Meierbachtol, J. Harper, N. Humphrey 

 

Materials and Methods 

Borehole Drilling Methods.   

We drilled boreholes using hot water methods (see Table S1 for site locations and 

drilling year). Heating surface water to ~68˚ C and pressurizing it to ~8 MPa allowed 

drilling rates which exceeded 100 m hr
-1

. We reduced the drilling rate as depth increased 

in boreholes greater than 450 m to counter heat loss through the drill hose to the 

surrounding deep borehole. We confirmed penetration to the ice sheet bed through three 

independent measures: 1) a drop in borehole water level indicates intersection with the 

basal hydrologic network (Fig. S1), 2) drop in load on a drill-mounted load cell indicates 

that the weight of the drill stem and hose down the hole is transferred from the drill rig to 

the ice sheet bed, and 3) water pressure spikes in the drill hose which are interpreted to 

result from enhanced backpressure as the drill tip approaches an immobile boundary such 

as frozen debris or the bed. Not all indicators occurred concurrently when approaching 

the bed; in some instances we measured dropping borehole water levels 30 m prior to 

registering a consistent pressure spike and load drop. We measured hole depth with an 

odometer mounted on the drilling wheel, manual inspection of tick marks on the drilling 

hose during drilling, and measurement of sensor cable length during pressure transducer 

deployment. From these three methods, we estimate the accuracy of our drill depths to be 

better than 1.5% of total ice thickness, or 10 m in deep boreholes. 

Instrumentation Methods.   
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Pressure was logged at five minute intervals during summer and reduced to 30 minute 

intervals during winter. The resolution of the system is approximately 0.1 m of water 

level change. In deep boreholes, we performed in-situ absolute calibrations after 

installation against temporary pressure transducers referenced at the ice sheet surface. 

Because the depth of the holes is known to within 1.5% of ice thickness, we 

conservatively estimate the absolute offset of pressure records in deep boreholes to be 

similar in magnitude (10 m). 

Accepting that boreholes act as accurate manometers representing subglacial 

conditions assumes that: 1) the influence of surface input to the borehole is negligible, 2) 

the borehole itself is connected to the subglacial system, 3) the pressure transducer is 

located low enough in the borehole so that creep closure or refreezing does not isolate the 

sensor from the basal system to which it is connected, and 4) the volume of water 

required for a given change in borehole water level is small compared to the volume of 

water in the drainage system. On the GrIS, cold englacial ice ensures that boreholes 

freeze closed in hours to days, eliminating the possibility of water entering the borehole 

at the surface. Water levels in all interior boreholes showed a rapid decline following 

breakthrough to the subglacial system during drilling (Fig. S1) and exhibited water level 

variations thereafter; supporting evidence that the borehole itself is connected to an active 

portion of the subglacial hydrologic network (30, 31). From real-time pressure 

monitoring as we lowered the transducers into the boreholes during installation we 

estimate the maximum sensor placement above the bed to be 5 m, and likely to be no 

more than 2 m. Thermal profiles at all zones show temperate ice above transducers, hence 

closure around the sensor from refreezing is eliminated. Borehole refreezing at depth 
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ensures that borehole pressure variations are a direct reflection of pressure changes at the 

bed and not influenced by volume discrepancies associated with changes in borehole 

water level. Thus, all four conditions are satisfied and we conclude that our pressure 

measurements are representative of subglacial pressure dynamics.    

We performed impulse tests by perturbing the subglacial system to which boreholes 

were connected with injection of either a constant volume (slug test) or constant 

discharge (pumping test) of water at the surface. Water levels were recorded at sampling 

intervals no greater than 2 s prior to and during testing. Small perturbation slug tests are 

easily repeatable and were performed in all boreholes to investigate hydrologic system 

response to small water pressure perturbations. Rapid closure from refreezing in our 

deepest boreholes precluded the performance of longer duration pumping tests in holes.   

Model Development.   

We implement a conduit melt-closure model which is conceptually represented by a 

semicircular basal melt channel extending from atmospheric conditions at the ice sheet 

margin to a given distance inland where it connects to a moulin. The model set-up is 

guided by the lumped element formulation presented by Clarke (32), and is 

fundamentally equivalent to the channel equations presented therein. We discretize the 

conduit along its length to more highly resolve inland processes in light of long conduit 

extents (Fig. S2). Cross-sectional area change of the channel is governed by the balance 

between conduit growth through melt-back of the ice walls, and closure by creep 

processes. Water flow through the conduit ( Q ), cross-sectional area ( S ), and the 

pressure gradient ( ) are related via turbulent flow through the conduit. In the context of 

the present formulation, inclusion of an opening term from sliding is akin to assuming a 
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constant linear bedrock feature running the length of the model conduit (up to 40 km). 

Because such a feature is highly unlikely, we omit an opening term from sliding. 

Equations governing cross-sectional area change and the potential gradient are given 

respectively as: 

 SNcQc
dt

dS n
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Physical variables ih , wh and bz refer to ice thickness, equivalent conduit pressure head in 

meters, and bed elevation respectively. The heat required to warm the basal water to the 

pressure melting point beneath thinner ice is taken in to account by the constant  . Other 

physical constants and parameters are listed in Table S2. 

At each conduit section ij  between upglacier node j  and downglacier node i  with 

length l , flow continuity is enforced. The additional water generated from melt of 

conduit walls is small in comparison to the flux through the conduit and is thus neglected. 

Together with continuity, Eqs. 1 and 2 are recast to yield a system of differential 

algebraic equations (DAEs) to solve for Q , S , and conduit head wh : 

      0Q  (3 
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At the conduit – moulin intersection, surface input and output through the conduit are 

balanced to yield the head change in the moulin: 
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where moulinS  is the moulin cross-sectional area, and outQ  is calculated by rearrangement 

of Eq. 2: 

 .
,

,,,,4/5

,

2/1

3 











 
 

mj

jbmbjwmw

wmjout
l

zzhh
gScQ   (7 

outQ  sets the discharge through the conduit. We impose a maximum head value 

equivalent to overburden in the moulin, assuming that additional water input would result 

in localized uplift and transport in to the adjacent basal system instead of further 

increasing head values. Because we focus on isolated conduit dynamics, we do not model 

storage processes here. Instead, we assume any additional input leaves the system. The 

full system of DAEs is solved in Matlab using ODE15s, a variable order solver which 

uses backward differences to implement the numerical differentiation formulas (33). Step 

size in the model is variable, but limited to a maximum of 1.5 hours.  
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For all steady and transient simulations we impose a parabolic ice sheet surface 

profile (34) given by: 

 )(
2

xL
g

h 



 (8 

where we take the yield stress   to be 100 kPa. We assume a horizontal bed along the 

length of the model domain. The resulting model surface gradient is quite similar to the 

141 km long K-Transect, which is slightly south of our study region (35). Sensitivity 

testing with a synthetic ice sheet profile assuming a 1˚ positive bed slope following Nye 

(36) does not significantly alter results.  

In transient simulations we force the conduit – moulin system with diurnally varying 

input ranging from 1 – 3 m
3
 s

-1
. The input amplitude is guided by previous measurements 

(25, 37), as well as by measurements made in a supraglacial stream during our 2012 field 

season at site S3. Additional transient simulations with variable discharge are discussed 

below. The model is run to steady state with a constant discharge set to the minimum 

value. The final results are then used as initial conditions for the transient scheme in 

which discharge varies. 

Heat Transfer.   

A fraction of frictionally generated heat in the model is required to warm basal water 

to the pressure melting point as overlying ice pressure diminishes towards the terminus. 

The remaining heat is instantaneously transferred to the conduit wall for melting. This 

formulation differs from the alternative Spring-Hutter thermal treatment for conduit flow, 

which tracks water temperature change and calculates conduit melt based on the 

temperature difference between ice and water, and an empirical heat transfer coefficient 
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(38). The instantaneous heat transfer assumption in our model precludes it from 

accounting for additional melting from temperature differences which may occur where 

surface water at, or near 0˚ C is routed to the bed where the pressure melting point is 

depressed by the overlying ice. Beneath thick ice this can result in temperature 

differences of up to 0.5˚ C or more. Such a temperature differential, however, would 

require no heat transfer to the moulin walls, which would cool melt water as it travels 

from the surface to bed. Previous analysis of hot water drilling shows that turbulent heat 

transfer in boreholes is 98% efficient over the length of deep boreholes (39). While this 

may be a maximum considering the large temperature difference between hot drill water 

and surrounding ice, it nonetheless suggests that heat transfer may be efficient enough to 

equilibrate melt water to basal surroundings by the time surface flow reaches the bed. 

Furthermore, implementation of a close variant of the Spring-Hutter equations has shown 

decreased heat transfer and slower basal conduit melt (40, 41), suggesting that the 

instantaneous heat transfer assumption in our implementation overestimates conduit melt, 

and hence growth (41). Because we are concerned with maximum conduit melt rates and 

growth in the drainage interior, we conclude that our implementation is appropriate for 

the present exercise.        

Steady State Model Sensitivity.   

We assess steady conduit conditions by setting 0
dt

dS
in Eq. 1, and manipulating 

Eqs. 1 and 2 to achieve a single formula for the steady conduit pressure gradient: 

 7/157/17/57/5

4 )( PPQAc OB    (9 
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. Eq. 9 is fundamentally equivalent to Eq. 11 

derived by Röthlisberger (23) using 3n , with distinctions that we have here applied the 

derivation to a semi-circular conduit and utilize the Darcy Weisbach formula to relate 

discharge to head loss. 

We assess the influence on the steady pressure curve of the flow rate factor ( A ), the 

Darcy friction factor ( f ), and the discharge ( Q ) through the conduit by calculating the 

pressure field over a range representing maximum and minimum values presented in 

previous literature (shown in Table S3). We find that the reference steady state conditions 

presented in Fig. 3 represent pressure conditions which are reasonable considering the 

range of published tuning parameters (Fig. S3). Steady state pressure is sensitive to the 

flow rate factor ( A ), which previous work has shown must be quite high to match 

measured water pressures (21, 23). This may be due in part to changes in conduit 

geometry or channel sinuosity which act to increase steady state channel pressures (42). 

Channel sinuosity increases pressure by inducing additional energy loss through added 

turbulence from change in flow direction. Broad, flat subglacial channels increase the 

steady pressure by weakening of the tunnel arch, thus enhancing closure rates. These 

effects are not accommodated in our modeling and would act to increase the steady state 

pressure curve. With this in mind, we assume that the steady analysis presented (Fig. 3) 

represents low expected steady state conduit pressures.  
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Supplementary Text 

Transient Conduit Growth Rates.   

The ability of the subglacial drainage network to rapidly evolve from an inefficient, 

distributed system to an efficient network of melt dominated channels relies on expansion 

of the basal channels through melting of the ice walls. Here we investigate the time scales 

of conduit growth in the drainage interior by assessing conduit response to sinusoidal 

input discharge variations with differing periods of oscillation. We constrain our 

investigation to changes in background daily and seasonal flow, and do not address 

catastrophic lake drainage events. This is justified considering the effect of such drainage 

events on surface velocity appears to be highly localized in space and time (10, 43), 

indicating a minor impact on the subglacial system.  

We extend the analysis presented in the manuscript, where input discharge varies 

diurnally from 1 – 3 m
3
 s

-1
, to longer seasonal time scales of discharge variation. We also 

perform the analysis for an input discharge which varies from 1 – 20 m
3
 s

-1
 which may 

illustrate a seasonal variation in water flux routed through potential conduits at the bed of 

the ice sheet this far inland. We find that conduit growth rates are slow enough that the 

period of input variation must be 90 days for conduit growth to capture a discharge 

increase from 1 – 3 m
3
 s

-1
 (Fig. S4). Under diurnally varying input, the basal conduit is 

only able to grow to accommodate ~14% of the changing input above 1 m
3
 s

-1
. 

Experiments simulating large changes in discharge show that limited conduit expansion 

results in a significant discrepancy between input and basal accommodation for all 

periods of input variability. While the imposed discharge increases to 20 m
3
 s

-1
 over a 45 
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day interval, the basal conduit expands to accommodate just 8.6 m
3
 s

-1
. Similar conduit 

growth rates have been reported (37) in the absence of variable discharge. 

Analysis with a single input point omits possible effects of multiple basal features 

convening to a larger trunk. To accommodate the aggregated effect of multiple inputs, we 

perform a numerical experiment whereby we impose additional discrete meltwater input 

points at 8, 16, 24, and 32 km inland from the margin (in addition to the input node at 40 

km). Each input point is forced with a discharge curve made up of a convolution of 

seasonal and diurnal signals (red line in Fig. S5).  The seasonal cycle of 90 days is more 

or less consistent with the period of temperature variation at 1000 m elevation for the 

extreme melt season in 2010 (24). Diurnal discharge variability increases to a maximum 

amplitude of 8 m
3
 s

-1
. The sum of these inputs is of the same order of magnitude as 

reported discharge values at the terminus of nearby Leverett Glacier (13), but we note 

that the input curve defined here is meant to be illustrative of reasonable real world 

conditions. The intent is not to match our observed pressure behavior or directly forecast 

basal conditions.  

We simulate conduit growth for two differing initial discharge values to assess the 

sensitivity of behavior to initial cross sectional area. In the high discharge simulation the 

background flux at each input point is set to 1 m
3
 s

-1
, resulting in a cumulative discharge 

of 5 m
3
 s

-1
 at the terminus. This initial discharge is likely an upper end member estimate 

considering that surface inputs are eliminated during the winter period and background 

basal melt rates (from geothermal heat flux and frictional heating as ice slides over the 

bed) are low. Nevertheless, under such initial conditions slow growth of conduits requires 

nearly 2 months before discharge through the conduit reaches the diurnal input minimum  
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(Fig. S5). A simulation with low initial discharge of 0.3 m
3
 s

-1
 (cumulative sum of 1.5 m

3
 

s
-1

 at the terminus), a value perhaps more representative of background winter flux, 

results in growth rates which limit conduit development over the entire simulation period. 

Maximum discharge reaches an order of magnitude greater than the initial condition in 

this low flux scenario, but only after 10 weeks of growth (Fig. S5). The effect of 

increasing potential gradients from enhanced discharge towards the terminus appears to 

be small in both experiments. This analysis suggests that in the interior region, expansion 

of the conduit network necessitates time scales longer than the likely seasonal evolution 

of input to the basal system through the melt season. Further, the low initial discharge 

simulation emphasizes the role of processes besides melting in enhancing efficiency 

when antecedent conditions are dormant.     

Stability of Bedrock Roughness-Dominated Drainage.   

The switch from a drainage regime driven by sliding over bedrock, to a regime where 

growth is driven by melt-back of the ice walls is not necessarily confined to low 

discharge rates. Here, using the equation for critical discharge presented by Schoof (11), 

we show that the ice sheet setting away from the margin provides local conditions which 

enhance the stability of bedrock roughness-dominated drainage elements. The critical 

discharge equation denotes the point where growth from melt of ice walls dominates over 

opening from sliding: 

 



)1(1 c

hu
Q b

c
 (10 

where bu  is sliding velocity, h  is bedrock step height, and 4/5 . Assuming a 

reasonable sliding velocity of 60 m yr
-1

, critical discharge reaches values on the order of 
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multiple m
3
 s

-1
 for potential gradients indicative of interior ice sheet conditions (Figure 

S6). Under potential gradients similar to those along the K-transect 30-40 km inland (

= 150 Pa m
-1

), drainage features dominated by sliding over a rough bed maintain stability 

at discharges greater than 2 m
3
 s

-1 
for small roughness heights. Critical discharge values 

>1 m
3
 s

-1
 are maintained under potential gradients more than double that presented above. 

We take this steady analysis as illustration that away from the ice sheet margin, local 

drainage through features driven by sliding processes can maintain stability under 

measurable discharge. Under these situations drainage pathways would take the shape of 

broad, low features with considerable basal coverage. 
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Supplementary Figures 

 

 
Figure S1:  Example of borehole water level drop at each site in response to intersection 

with the basal network during drilling. Water levels remain at the ice surface during 

drilling, resulting in water levels above ice overburden pressure at time of intersection. 

Broken lines (Sites S1 and S4) result from water levels temporarily dropping below the 

level of the pressure transducer until sensors were reset. Time 0t sec is manually 

chosen at the break in slope, indicating the onset of water level drop. 
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Figure S2: Schematic of model set-up with ice sheet model surface profile (black line). 

Conceptual conduit water pressure is denoted by the dashed blue line.  
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Figure S3.  Steady state simulation results for a range of discharge ( Q ), flow rate factor (

A ), and friction factor ( f ) values. Results for maximum discharge values of 300 m
3
 s

-1
 

are displayed as dashed lines, and those for minimum discharge values of 1 m
3
 s

-1
 are 

displayed as solid lines for each of the flow rate factor and friction factor combinations 

(various colors). Results for reference parameter values used in the manuscript are 

presented as thick red lines.    
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Fig. S4. Conduit discharge (dashed lines) in response to input whose magnitude rises and 

falls over a sweep of time periods ranging from 1 day to 90 days. A single input cycle 

(black line) is isolated and normalized to the input period to facilitate display of all 

simulations. Two sets of simulations are shown for small input variation from 1 – 3 m
3
 s

-1
 

(A), and a larger change from 1 – 20 m
3
 s

-1
 (B).   
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Fig. S5.  Simulated seasonal discharge at each input point (red line) and resulting flux at 

40 km inland for an initial discharge value of 1 m
3
 s

-1
 (black line) and 0.3 m

3
 s

-1
 (blue 

line). To facilitate presentation of both simulations, y-axis is the difference between 

discharge at time t , and initial discharge.  
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Figure S6.  Critical discharge ( cQ ) for bedrock step height and potential gradient 

conditions. Step heights ranging from 0.1 to 0.5 were chosen to illustrate the effect of 

increasing roughness on discharge. 
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Supplementary Tables 

 

Site Latitude Longitude 
# of 

Holes 

Year 

drilled 
Physical Characteristics 

S1 67.1622 -50.0642 6 2010 - Nearby crevassing 

 67.1670 -50.0663 5 2010 - Surface stream (>3 m
3 

s
-1

) within 

200 m 

 67.1593 -50.0593 2 2012 - Nearby crevassing 

S2 67.1952 -49.7195 3 2011 - Topographic ridge 

- Multiple moulins within 500 m 

- Supraglacial lake within 1 km in 

2012 

S3 67.2042 -49.7179 4 2012 - Surface stream (1-3 m
3
 s

-1
) within 

50 m 

S4 67.2015 -49.2890 4 2011 - Moulin within 500 m 

- Multiple surface streams (<3 m
3
 s

-1
) 

- 3 of 4 boreholes drilled to the bed. 

Table S1. Site latitudes, longitudes, number of holes drilled, and drilling year. Boreholes 

were drilled at three locations ~1 km apart near the margin at Site 1.  

 

 

Symbol Value Units Description 

w  1000 kg m
-3 

density of water 

i  910 kg m
-3 

density of ice 

wc  4.22e3
 

J kg
-1

 K
-1 

specific heat capacity of ice 

tc  7.5e-8
 

J kg
-1

 K
-1 

pressure melting coefficient 

A  5.3e-24
 

Pa
-3

 s
-1 

flow rate factor of ice 

n  3 - Glen’s flow law exponent 

g  9.81 m s
-2 

gravitational acceleration 

f  0.2 - Darcy friction factor 

mS  2.0 m
2 

moulin cross sectional area 

Table S2. Physical parameters used in the melt-closure model. 

 

 

 Discharge ( Q ) Flow Rate Factor ( A ) Friction Factor ( f ) 

Low 1 (25) 2.4e-24
 
 (34) 0.0375 (11) 

High 300 (13) 1.4e-22 (23) 0.2 (4) 

Table S3. High and low values for steady state parameter sweep. 
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CHAPTER 2 

IMPACT OF FIELD-CONSTRAINED BOUNDARY CONDITIONS ON 

WESTERN GREENLAND’S THERMO-MECHANICAL STATE 

 

Abstract:  

Boundary conditions drive thermal behavior on the Greenland Ice Sheet, but a lack of 

observational constraints forces numerical models to prescribe boundary temperature and 

heat flux from independent model output. Here, we quantify the difference between 

observations and commonly used boundary condition datasets over a land terminating 

sector of western Greenland.  Through numerical techniques we investigate the 

sensitivity of the modeled thermal regime to boundary adjustments, using in-situ full-

thickness temperature profiles at multiple sites in the ablation zone to assess modeled 

partitioning of heat flow. To constrain the surface boundary, we measured near-surface 

temperature in two 20 m boreholes in the ablation zone from 2011 – 2013, and augment 

these data with existing 10 m firn temperature observations in western Greenland’s 

percolation zone. We constrain basal heat flux using in-situ measurement in a deep 

bedrock hole at the study area margin, and existing heat flux assessments. Measured 

basal heat flux at our study area is <50% of spatially distributed models. In contrast, 

measured near-surface temperatures are warmer than the modeled counterpart with 

magnitudes exceeding 10°C.  Lower heat flux induces a model cold bias compared to 

measured temperature profiles, and frozen basal conditions across the ablation zone. 

Temperate basal conditions are re-established under surface boundary adjustments. 

Warmer surface ice and firn can introduce three times more energy to the modeled ice 
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mass than is removed at the bed due to reduced basal heat flux, indicating that near-

surface effects must be adequately prescribed in thermo-mechanical modeling 

experiments. 
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1 Introduction 

In recent years, substantial advances have been made to deterministic models of the 

Greenland Ice Sheet (GrIS), motivated by the need to constrain potential changes in 

coming centuries. Higher-order physics have been adopted [e.g. Larour et al., 2012; 

Brinkerhoff and Johnson, 2013], surface and bed geometry has been illuminated [Bamber 

et al., 2013], and  surface velocity fields provide coverage at a sufficient level to provide 

a target for model tuning at the full ice sheet scale[Joughin et al., 2010; Rignot and 

Mouginot, 2012]. Yet, despite these advancements, the upper and lower thermal 

boundaries of the ice sheet remain poorly constrained by direct observations. These 

boundary conditions dictate the global thermal regime of the ice sheet, therefore strongly 

control internal deformation via the temperature-dependent flow-rate factor and 

transitions from frozen to melted basal conditions which govern basal sliding.   

Modeling the GrIS requires prescription of the surface boundary condition, taken as 

the temperature at a shallow depth where seasonal variations are damped. However, 

observations in the near-surface layer (~10 meters (m) depth) are limited to a relatively 

small number of point measurements around the ice sheet, many of them only sporadic 

[Benson, 1962; Mock and Weeks, 1965; Echelmeyer et al., 1992; Humphrey et al., 2012; 

Koenig et al., 2013].  Sparse measurements have encouraged the use of regional climate 

model (RCM) output to define the upper thermal boundary condition. This prescription 

relies on the well-established premise that the temperature at 10-15 m depth is damped to 

the annual surface mean [Cuffey and Patterson, 2010]. However, this approximation is 

only valid on the GrIS at high elevations in the dry snow zone [Mock and Weeks, 1965].  
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In the percolation zone where seasonal meltwater is generated, the latent heat release 

from refreezing of meltwater percolating to depth results in temperatures significantly 

warmer than the surface mean [Echelmeyer et al., 1992; Humphrey et al., 2012]. In the 

ablation zone multiple processes act to complicate near-surface temperature dynamics. 

Seasonal accumulation can insulate underlying ice from the winter cold wave and provide 

a latent heat source from refreezing of spring melt. However, this warming may be 

partially offset by a perceived cooling from the inability of the ice temperature to rise 

above 0°C in the summer months [Hooke et al., 1983]. Crevasses and moulins impose a 

thermal influence with mixed impact. Air-filled features can induce cooling by exposing 

deeper ice to atmospheric conditions [Echelmeyer et al., 1992], or introduce additional 

energy to the near-surface through increased absorption of solar radiation [Pfeffer and 

Bretherton, 1987]. When water-filled, crevasses and other macro-scale hydrologic 

features can provide a heat reservoir that may contribute to near-surface (or full-

thickness) warming for multiple years [Jarvis and Clarke, 1974; Phillips et al., 2010].  

Thermo-mechanical ice sheet models also require prescription of the geothermal heat 

flux (GHF) along the basal boundary. Direct measurement of heat flow has, until 

recently, been limited to two sites in southern GrIS [Sass et al., 1972]. Indirect model-

based studies utilizing temperature records at ice core sites [Dahl-Jensen et al., 1998; 

Petrunin et al., 2013] have extended direct and indirect heat flux measurements to four 

point locations across the 1.71 million square kilometer (km
2
) ice sheet. In the absence of 

direct measurements, heat flux maps are commonly prescribed in studies at the full ice 

sheet scale. Spatially distributed fields are generated from satellite-derived magnetic 

crustal thickness [Fox Maule et al., 2009], or extrapolation of the global heat flux dataset 
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based on tectonic [Pollack et al., 1993], or seismic models [Shapiro and Ritzwoller, 

2004]. However, these exhibit little consistency between one another or with independent 

observations. In fact, spatially uniform heat flow generally produces a better model match 

to observations than any of the distributed models [Rogozhina et al., 2012]. 

The paucity of data constraining Greenland’s thermal boundaries forces ice sheet 

models to employ boundary condition datasets which are inconsistent or neglect critical 

warming processes. The resulting model thermo-mechanical behavior is unlikely to 

reflect the current state of the GrIS, but assessment of modeled thermal biases is hindered 

by the lack of metrics away from the ice sheet divide [Rogozhina et al., 2012; Seroussi et 

al., 2013]. Thus, the thermal state of the majority of the ice sheet remains subject to 

considerable uncertainty, motivating the work here.  In this study we investigate upper 

and lower thermal boundary conditions on the GrIS and the sensitivity of model behavior 

to observation-constrained boundaries. We target our study on a >14,000 km
2
 region of 

western Greenland which has been the focus of recent ice- and bedrock borehole studies. 

We begin by refining thermal boundary conditions to honor novel in-situ data from these 

field campaigns, including ablation zone ice temperature and direct measurement of 

bedrock heat flux. We augment these data with firn temperature measurements and 

additional GHF values from observation, and assess the differences between commonly 

used, model-based datasets and our observation-constrained boundary conditions. 

Finally, we test the response of a higher-order numerical ice sheet model to our altered 

boundary conditions. To assess model output, we use full-thickness temperature 

measurements collected in a transect of deep boreholes through the ablation zone. 
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2 Methods 

We begin the methodology with a description of the study area, the spatially 

distributed surface and basal boundary datasets we choose to use as ‘reference’ fields, 

and methods used to gather field data and generate observation-based boundary 

conditions. We follow this with a description of the ice sheet model and modeling 

experimental set-up.    

2.1 Study area 

We focus the study on a subsection of the western GrIS extending east from 

Isunnguata Sermia (IS), a land terminating outlet glacier, to the ice sheet divide (Figure 

1). This study domain contains a relatively rich suite of measurements to inform 

modeling decisions and interpretation. The domain contains intensive airborne radar data 

captured through the ICEBRIDGE project and has been the focus of an intensive 

borehole drilling campaign [Meierbachtol et al., 2013]. From 2010 - 2012, we drilled 

boreholes to the ice sheet bed using hot water methods at sites spanning a transect in the 

ablation zone where ice thickness ranged from 100 - 825 m. We measured temperature 

through the ice column in boreholes at 4 sites, and augmented the data with detailed near-

surface temperature measurements at two of the field locations. Near-surface temperature 

measurements in the percolation zone have been collected ~270 km to the north of our 

study domain at 14 sites along the EGIG transect [Humphrey et al., 2012]. Finally, recent 

bedrock drilling at the ice sheet margin provides unique constraints on in-situ geothermal 

heat flux [Harper et al., 2010].  

In modeling experiments, we define the model domain by extending 15 - 20 km north 

and south of the IS terminus. Lateral boundaries follow the ice sheet surface slope to the 
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divide, closing the domain. Constraining the domain in this way facilitates better focus on 

reaches with dense observation (as opposed to forcing full ice sheet simulations) while 

still allowing transverse gradients throughout the domain in contrast to two-dimensional 

flowline modeling. 

2.2 Reference datasets 

To maintain consistency with previous modeling investigations, we use geothermal 

heat flux and surface temperature datasets provided as part of the SeaRISE project as 

reference boundary conditions.  

The SeaRISE project offers magnetic- and seismic-based geothermal heat flux 

datasets [Shapiro and Ritzwoller, 2004; Fox Maule et al., 2009]. We choose the seismic-

based dataset in the present study as these heat flux values (56-65 mW m
-2 

across the 

study area) generally constitute the lowest values of the seismic, magnetic, or tectonic-

based models common to the GrIS. Because the measurement-derived field we impose as 

an alternative GHF is lower than this reference dataset (see Results), interpretations based 

on this comparison are also valid with respect to warmer GHF products. 

The reference surface temperature field is defined by the Regional Climate Model 

(RCM) RACMO mean annual surface temperature, which is temporally averaged over 

the period 1958-2007 [Ettema et al., 2009]. RACMO output represents temperature at the 

ice/snow surface, preventing temperatures from warming above   C. 

2.3 Measurements and observation-based boundary parameterization 

2.3.1 Temperature measurements in the ablation zone 

During the 2011 field campaign we drilled 20 m boreholes at two sites below the 

ELA using hot water methods, and instrumented these holes with data logging thermistor 
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strings (Figure 1). We use 32 temperature sensors, spaced every 0.6 m to a maximum 

depth of 20 m below the surface, and capture measurements at 1 to 3 hour intervals. 

Temperature time series in the holes shows the thermal disturbance from drilling is 

effectively eliminated within 2-3 weeks of drilling. Temperature sensors and data loggers 

are identical to those used by Humphrey et al [2012]. We performed a zero point 

calibration in the field, and conservatively estimate the accuracy at 1.0°C. To account for 

large changes in surface elevation associated with seasonal ablation (approaching 3 

meters per year (m a
-1

)) we adjust sensor depth below the ice surface using acoustic depth 

rangers from on-ice met stations at each site. Temperatures are then binned in 0.6 m 

increments. We report temperatures measured over a 15 month period from 7/2011 to 

10/2013 at site GL11-S1. At the upper site, GL11-S2, instrument malfunction resulted in 

a 5 month measurement record from 7/2011 to 12/2011. 

2.3.2 Observation-based boundary parameterization 

As opposed to comparing uncertainties based on existing basal boundary datasets 

[Rogozhina et al., 2012], or parameterizing surface temperatures based on 

approximations to physical processes [Reeh, 1991; Phillips et al., 2010], we address the 

effects of boundary condition adjustments on ice sheet model output from an alternate 

approach. We compare standard boundary condition datasets with fields which we 

develop directly from measurements on the ice sheet. Doing so allows us to: 1) take 

advantage of the dense network of observations near our study area (compared to the rest 

of the GrIS), and 2) treat surface boundary condition changes across multiple glacier 

facies. 
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Direct measurements of GHF in bedrock boreholes and indirect measurements 

utilizing ice core temperatures bound our study region (Figure 1). Heat flux from 

temperature gradients in deep bedrock boreholes at two sites in southern Greenland 

ranges from 37 to 41.8 mW m
-2

 [Sass et al., 1972]. A >300 m deep bedrock borehole has 

been drilled as part of the Greenland Analogue Project (GAP) adjacent to our model 

domain [Harper et al., 2010]. Temperature gradients in this hole yield a GHF value of 

34.8 mW m
-2

. In 2011, an additional 700 m bedrock borehole was drilled under the same 

project, terminating under the ice sheet in our model domain. Measurements in this hole, 

the presentation and detailed analysis of which is forthcoming [Claesson Liljedahl L. et 

al., in preparation], indicate a GHF of 27.2 mW m
-2

. We note that GHF prescription as 

the mean of these two values has little effect on modeling results and interpretation, and 

use the lower GHF value in the deeper hole as it terminates under the ice sheet within our 

model domain. North of our model domain, Petrunin et al [2013] achieved tight model 

fits to measured temperature profiles at GISP2 and GRIP through coupling of lithospheric 

and ice sheet models with GHF values of approximately    and 61 mW m
-2

 respectively. 

We adopt these calculations at the ice core locations which bound our study domain to 

the north. In the absence of a more physically plausible method, we linearly interpolate 

between these five bounding values over the model domain (Figure 2). 

Near-surface temperatures are limited above the ELA. Measurement availability in 

central-western Greenland was limited to a few measurements below 2000 m in previous 

efforts by Reeh [1991] to parameterize warming in the percolation zone. Since that study, 

10 m temperatures were measured at 14 sites between 2007-2009 along the EGIG 

transect approximately 270 km north of our study area [Humphrey et al., 2012]. We 
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utilize these near-surface temperatures to parameterize warming effects in the percolation 

zone in our study region.  

We parameterize the surface boundary temperature as a deviation from the reference 

case to preserve larger scale lapse rates and climatology embedded within the reference 

RCM. Temperature adjustments follow a heuristic, multi-part fit to honor the near-

surface measurements. In order to effectively treat the difference in ELA position 

between the sites along the EGIG line, (estimated at 1100 m, near Swiss Camp [Box et 

al., 2006]), and our study domain (~1550 m [van de Wal et al., 2008]), we use the ELA 

as the reference elevation, and base the parameterization on the elevation above or below 

this reference point. Above the elevation of maximum temperature deviation in the 

percolation zone, differences between measured and reference temperatures are fit using 

an exponential function. Between the ELA and elevation of maximum deviation, the 

temperature difference between measured and the reference dataset follows a linear fit, 

assuming that the temperature deviation      C at the ELA. 

Below the ELA we calculate the difference between our temperature measurements at 

depth and the reference temperature dataset and extrapolate this difference across the 

ablation zone using a second order polynomial from the ELA to the elevation of 

measurement site GL11-S1 (see Figure 1). Below this elevation, we maintain a constant 

temperature deviation to avoid imposing temperatures greater than 0°C. The 

parameterization of near-surface temperature across the entire domain is summarized by 

the workflow in Figure 3. 
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2.4 Ice Sheet Model 

We implement numerical experiments using the VarGlaS ice sheet modeling 

framework. VarGlaS provides capabilities for three dimensional modeling of ice flow 

using finite elements under the premise of variational principles for the momentum 

balance [Brinkerhoff and Johnson, 2013]. The momentum balance satisfies the Blatter-

Pattyn first-order equations [Blatter, 1995; Pattyn, 2003], assuming small bed slopes and 

negligible horizontal gradients in vertical velocity. Thermo-mechanical coupling is 

achieved using an enthalpy scheme. Internal heat sources in the enthalpy formulation are 

limited to strain heating, and additional heat is introduced at the basal boundary through 

frictional dissipation and geothermal heat flux. A complete description of the model 

formulation and numerics therein can be found in Brinkerhoff and Johnson [2013].  

The surface boundary of the momentum balance is stress free, while the basal 

boundary employs a linear friction law with an impenetrability constraint. Zero gradients 

in stress are implied across the lateral boundaries and at the divide.  

 The surface boundary in the enthalpy scheme is a prescribed Dirichlet condition 

representing the mean annual near-surface temperature. Basal gradients in internal energy 

at the bed follow: 

 

 LMqhHH bgeo   BB uun
2)(  (1)  

 

where )(H is an enthalpy-dependent diffusivity, H is enthalpy, h is ice thickness, 2 is 

basal traction, 
Bu is the bed-parallel basal velocity vector, geoq is geothermal heat flux, 

bM is the basal melt rate,  the density of ice, and L is the latent heat of fusion for water. 
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A natural boundary along the lateral edges in the enthalpy formulation imposes an 

insulation condition. This condition is equivalent to Equation 1 with the right-hand side 

set to 0. Choosing the lateral boundaries of our model domain normal to surface elevation 

contours ensures model driving stress direction is tangential to these facets, minimizing 

thermal effects from advection across the lateral boundaries. At the ice sheet divide, we 

impose a 1-D temperature profile assuming a constant vertical strain rate [Cuffey and 

Patterson, 2010], and accumulation rate of 13.0  mab  based on available GC-Net 

accumulation data [Steffen et al., 1996].  

A strength of the VarGlaS framework is the ability to assimilate observed surface 

velocities through adjoint-based techniques, which we use to find a steady state instance 

of the model. The objective function minimizes the logarithmic misfit between observed 

and modeled velocities subject to the forward model constraint. We choose a logarithmic 

cost functional to equitably distribute optimization effort across the full range of velocity 

magnitudes. Additionally, we address overfitting by imposing a Tikhonov regularization 

term which penalizes gradients in basal traction [Gillet-Chaulet et al., 2012; Seroussi et 

al., 2013]. The degree of regularization is a function of the ice sheet thickness and the 

tunable parameter  . This results in the following objective function to be minimized via 

a Quasi-Newton BFGS scheme [Nocedal and Wright, 2000]: 
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Through the use of an L-curve analysis [Aster et al., 2005], we choose 2 (Figure 4). 

Experimentation with different degrees of regularization influences the velocity misfit but 

does not affect comparison of the experiments as described below. With the 

regularization parameter in hand, we iteratively update the momentum balance through 

variations in the basal traction parameter    under constant viscosity and enthalpy, 

calculated from an initial steady state solution. Enthalpy and non-linear viscosity are 

updated every 50 iterations during the inversion process. Termination of the inversion is 

largely a qualitative process, previously referred to as the ‘recent improvement threshold’ 

approach [Habermann et al., 2012]. Under this approach, we terminate the inversion 

when changes in the objective function between iterations become small. An alternative 

termination criteria (e.g. the discrepancy principle [Habermann et al., 2012]), which 

takes in to account uncertainty in the surface velocity and elevation data as well as error 

associated with assumptions in the model formulation (e.g. first-order mechanics) may 

yield an improved solution but is beyond the scope of this study. 

The model domain surface and bedrock topography are defined by a 1 km digital 

elevation model (DEM) [Bamber et al., 2013]. We apply a Gaussian filter to the surface 

topography to eliminate locally sharp changes in the DEM’s representation of elevation. 

We consider this to be justified as the DEM is constructed from a combination of direct 

measurement and remotely sensed products over more than a decade, may contain 

artifacts from the merging of such data, and is prone to uncertainty from local averaging 

and interpolation. The unstructured model mesh is refined following the Hessian of the 

observed velocity field [Brinkerhoff and Johnson, 2013], resulting in mesh spacing 

ranging from <2 km to 10km. The final model mesh consists of 10 evenly spaced vertical 
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layers and 31,108 nodal points. SAR-based velocity observations for the 2008-2009 

period [Joughin et al., 2010] are nearly complete over the study region and guide the 

mesh refinement denoted above, as well as the data assimilation target. A region of the 

model domain near the divide lacks velocity observations and is filled with balance 

velocities. We smooth the transition between observational and balance velocity to 

reduce numerical artifacts during assimilation. 

2.5 Model Experimental Design 

We perform three different modeling experiments to investigate sensitivity to thermal 

boundary condition adjustments. Experiment E-REF is forced at the surface and bed by 

the reference datasets and provides baseline results for comparison. With these 

boundaries we assimilate surface velocity observations to arrive at a basal traction field 

which minimizes the velocity misfit as described above. In order to isolate dynamic 

effects from boundary condition changes alone, we maintain this same traction field 

through each subsequent experiment. In the second experiment (E-GHF), we keep the 

reference surface boundary condition but change the geothermal heat flux based on 

available measurements. In the final experiment (E-FULL), both the surface and basal 

enthalpy boundaries are adjusted based on measurements. We focus on temperature 

output from the steady state model as a metric of comparison between these three 

experiments.  
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3 Results 

3.1 Measurements 

3.1.1 Geothermal heat flux 

Measurements at the GAP borehole site adjacent to the model domain is less than half 

of the reference dataset (Figure 1). To the north, modeled GHF values at GISP and 

NGRIP are 10 mW m
-2

 higher than the Shapiro and Ritzwoller [2004] model, but the 

linearly interpolated field is everywhere lower across the model domain (Figure 2). 

Interpolated values range from 27 mW m
-2

 near the ice sheet margin to 49 mW m
-2

 at the 

divide and are, on average, 23 mW m
-2

 less than the reference field.  

3.1.2 Surface temperature 

Our measurements in the ablation zone show large seasonal variability in temperature 

in the upper 8 m at both sites and down to ~15 m depth at site GL11-S1 (Figure 5). 

Temperatures at 20 m depth from both sites show limited fluctuations and are 

significantly warmer than the reference counterpart. At lower site GL11-S1, the 

difference between measurement and the reference temperature is 10°C. At upper site 

GL11-S2 we measure a smaller temperature difference, but measured temperatures 

remain 5°C warmer than the reference dataset. As detailed by Humphrey et al [2012], 

warming in the near surface firn layer can be substantial due to latent heat release. 

Measured temperatures deviate from the RACMO surface reference by up to 15°C 

(Figure 5). Even at Crawford Point, the highest field site in the Humphrey et al study, 

measured temperatures deviate from the reference dataset by 3°C. Temperature 

differences between the reference surface temperature output and our observation-based 
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field reach 14°C, and on average the data-constrained scheme is nearly 6°C warmer over 

the model domain (Figure 2).  

3.2 Modeling 

3.2.1 E-REF results 

Results from the assimilation procedure are presented in Figure 6. High traction 

values generally limit modeled sliding above the ELA. Exceptions close to the divide 

typically correspond to areas where velocity observation uncertainty increases or where 

balance velocity fills observational gaps. A drop in driving stress from relaxation of 

surface slopes near the approximate ELA forces a reduction in basal traction and, 

correspondingly, a sharp increase in modeled sliding velocity. Maximum surface 

velocities reach >250 m a
-1

 in the ablation zone but are generally constrained to 90-110 m 

a
-1

. The resulting RMSE between modeled and observed surface velocity is 3.8 m a
-1

 with 

a maximum deviation of 27 m a
-1

.  

The basal thermal field under reference boundary conditions shows temperate 

conditions across nearly the entire model domain (Figure 7). At the ice sheet divide basal 

conditions transition from temperate to -10°C. This variability results from the basal heat 

flux field, which increases from north to south along the divide, as well as ice thickness 

changes which vary by 300 m. Along the ice sheet margin, a rim of frozen conditions 

exists where ice is thin and conductive losses are greatest. 

3.2.2 E-GHF results 

Reducing geothermal heat flux with the observation-based field invokes strong 

changes in the basal thermal regime near the ice sheet divide and margin. Frozen 

conditions are consistent along the divide and extend towards the ice sheet margin before 
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modeled basal ice reaches the pressure melting point (Figure 7). Near the margin, 

reduced heat flux increases the extent of frozen conditions compared to E-REF. Basal 

temperatures below the pressure melting point extend >50 km from the ice sheet 

terminus. The pattern of frozen and temperate conditions is strongly controlled by 

bedrock topography, with the coldest regions corresponding to topographic highs, and 

correspondingly thinner ice.  

3.2.3 E-FULL results 

Near the ice sheet divide, the pattern of thermal conditions at the bed resulting from 

data-driven surface and basal boundary conditions do not differ substantially from E-

GHF results. However, because the imposed surface temperature parameterization 

scheme generates temperatures at the ice sheet divide slightly warmer than the reference 

dataset (<2°C), these warmer temperatures are realized by a slight increase in basal 

temperatures and corresponding expansion of temperate conditions. Approaching the ice 

sheet margin, changes in surface temperature invoke significant warming at the bed. 

Frozen conditions, with temperatures reaching -5° to -10°C at the bed under E-REF and 

E-GHF are largely eliminated. A closer look at temperatures through the ice column 

reveals propagation of surface temperature disturbances to depth (Figure 8). Much of the 

heat lost through reductions in basal heat flow appears to be recovered by warming at the 

surface.  

3.3 Comparison against measured temperature profiles  

We stress that the objective in comparing model results to measured temperature 

profiles is not to achieve a perfect match, which would amount to a tuning exercise and is 

not the goal of the study. A detailed account of processes necessary to achieve the 
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measured temperature profiles has been undertaken by the authors [Harrington et al., 

submitted]. Instead, the objective of the comparison is to support or refute the 

consequences of changing model boundaries by placing results in an observational 

context against independent measurements through the full ice column.    

Model experiments under reference surface boundary temperatures (E-REF and E-

GHF) consistently indicate temperatures in the upper reaches of the ice column which are 

substantially colder than measured (Figure 9). The depth to which this cold bias 

propagates varies depending on the borehole in question and the heat flux prescribed. 

Reducing geothermal heat flux consistent with measurements (E-GHF) forces modeled 

temperatures which are even colder. The model cold bias reaches values up to 7°C below 

the ice surface. We observe temperate conditions at the bed in all holes for which we 

have measurements (GL11-S1, GL12-S2, GL11-S2), yet modeled basal temperatures at 

these sites are -3°C or colder under E-GHF. 

The added heat at the surface in E-FULL has a large impact on temperatures through 

the entire ice column. Compared to E-GHF, ice temperatures at each of the measurement 

sites are warmer by at least 3°C through the ice column. In the upper half of the ice 

column, removal of the cold bias from a warmer surface condition generates a closer fit 

to measurements, although modeled ice temperatures generally remain colder than 

measured. This result is expected considering the likely warming effect of macro-scale 

hydrologic features such as moulins and shallow crevasses [Harrington et al., submitted], 

which are not explicitly accounted for in our thermodynamic model. In the lower half of 

the ice column, results are mixed. The profile of the temperature curve towards the bed is 

quite similar to that from E-REF, despite significantly reduced basal heat flux. Model 
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temperatures are warmer than measurements at both GL10-S3 and GL11-S2 but remain 

too cold at GL11-S1.  

4 Discussion 

We begin by assessing the limitations of the model experiments in terms of both the 

boundary condition parameterization and numerical model mechanics. We subsequently 

discuss the experiment results in the context of implications for ice sheet modeling 

efforts. 

4.1 Assumptions and limitations 

Our basal heat flux parameterization is no doubt a simplification of real-world fluxes 

beneath the ice sheet where local spatial variability is likely present [Näslund et al., 2005; 

Buchardt and Dahl-Jensen, 2007]. However, there is no existing evidence for large 

spatial gradients in heat flux in our study region, and such gradients are also limited in 

the reference dataset, which was constructed on a       grid.  Other anecdotal evidence 

exists which supports the low GHF values we prescribe. While recent conclusions have 

suggested a thin lithosphere in central and northern GrIS [Petrunin et al., 2013], 

interpretations of S-receiver functions suggest increasing lithosphere thickness by up to 

50% further south on the ice sheet, as well as from east to west [Kumar et al., 2005]. This 

spatial pattern is consistent with other work suggesting thicker lithosphere in central-

southwestern Greenland associated with old, stable lithosphere [Darbyshire et al., 2004]. 

Thick lithosphere is correlated with lower geothermal heat flux as it decreases the 

thermal gradient through a thicker bedrock layer. Additional evidence for decreased GHF 

values in southern GrIS stems from previous ice sheet modeling investigation by Greve 

[2005], who found it necessary to reduce GHF to 20 mW m
-2

 at the Dye 3 site in order to 
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fit the modeled basal temperature to that measured in the ice core. The latter study 

supports our low GHF, but this result is not included in our measurement-driven field 

because of compounding uncertainty of past temperatures and precipitation rates on 

fitting Dye 3 basal conditions [Dahl-Jensen et al., 1998; Rogozhina et al., 2012]. 

The discrepancy between mean annual surface temperature from the reference RCM 

and measurements is clear, justifying a more plausible surface boundary that incorporates 

the warming effects from meltwater refreezing and other features near the surface such as 

crevasses. Seasonal melting in the percolation zone responsible for the warming effects 

parameterized in this study may exhibit variability on the order of years to decades, but 

model propagation of surface temperatures to depths of a few hundred meters requires 

centuries.  This discrepancy in time scales suggests that the surface boundary in a steady 

state model may be more appropriately reflected by near surface warming that is more 

spatially broad, albeit diffuse in magnitude. However, measurements by Humphrey et al 

[2012] provide supporting evidence for persistent thermal perturbations, as 10 m 

temperature changed only a few degrees (generally small compared to the temperature 

deviation calculated here) over three years with very different melt conditions. 

Furthermore, sensitivity testing over a range of surface temperature perturbations shows 

an approximately linear relationship between the magnitude of perturbation and the 

resulting area of frozen bed conditions in the ablation zone. Thus, even small deviations 

from standard, model-based surface temperature datasets have a measurable impact on 

modeled basal conditions. 

Interpretation of any model results hinges on assumptions and limitations within the 

numerical model. Our assumption of steady state and neglect of historical climate change 
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is a significant but necessary constraint under the current assimilation method. Other 

uncertainties in the modeling experiments are present in the description of deformation, 

where we assume a stress exponent of     and have not prescribed enhanced 

deformation. Finally, local averaging and interpolation inherent in the surface and bed 

DEMs result in a geometry which introduces error in state variables. 

The combined effect of these limitations may lead to a flow field and thermal profile 

which are inconsistent with present day observations. Unfortunately, many of the 

limitations described above are common to all numerical ice sheet models. Realistic 

treatment of constitutive processes requires in-situ measurements which are scarce. 

Topography over much of the current study area is constrained by dense airborne radar 

which is nearly unparalleled across the ice sheet. While the assumption of steady state 

may be alleviated by the use of a glacial spin-up, this introduces new uncertainty 

regarding historical temperature, mass balance, and temporal changes in basal sliding. 

We thus acknowledge the limitations of our numerical study, but assert that the modeling 

tools are commensurate with the current state of the art in ice sheet modeling practice.  

4.2 Boundary condition impacts on numerical modeling 

In the lower half of the ablation zone our model results using the Shapiro and 

Ritzwoller geothermal heat flux (E-REF) retain a rim of cold basal conditions which 

becomes pervasive with a decreased GHF commensurate with observations (E-GHF). 

This generates physically inconsistent model results, with basal slip reaching tens of m a
-1

 

despite the frozen conditions. Cold based sliding has some precedence; Echelmeyer and 

Wang [1987] observed basal sliding at the ice-rock interface under cold conditions. 

Cuffey et al [1999] measured cold-based sliding at -17°C. However, the physical setting 
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of these measurements at the ice terminus, and magnitude of observed sliding (10
-4

 – 10
-1

 

m a
-1

) are at odds with our model results, which show much faster sliding speeds far from 

the terminus. More importantly, direct measurement of basal temperature in our 

boreholes (Figure 9) and nearby observations of subglacial water issuing from the ice 

sheet terminus [Bartholomew et al., 2011] indicate temperate basal conditions at least 

dominate in the lower ablation zone. 

Unique basal heat flow measurement in our study area is less than half of standard 

datasets, but our modeling results honoring this data generate fast sliding over a frozen 

bed which is physically untenable. This suggests that there are one or more missing heat 

sources in the current model formulation. Macro-scale hydrologic features extending 

through the full ice thickness, such as moulins or crevasses, have been implicated to 

match temperature profiles elsewhere on the GrIS [Phillips et al., 2010] and to explain 

changes in surface velocity along the EGIG transect [Phillips et al., 2013]. Worldview 

imagery and on-the-ground investigation suggests that, while regions of crevassing are 

evident [Harrington et al, submitted], widespread crevassing through the ablation zone in 

our study area is not as pervasive as the previously investigated counterpart to the north. 

Nevertheless, while the existence of a continuous, high-density fracture network 

throughout our model domain is unsupported, localized crevasse fields or discrete 

features with large spacing likely have an integrated effect on temperature as ice is 

advected through or near them over time. 

The frictional dissipation of heat from water flowing through an active basal drainage 

system may provide an additional heat source at the ice sheet bed not accounted for in the 

model. A strong seasonal melt cycle is present in the region, which has been the recent 
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focus of numerous investigations on basal hydrology and impact of surface-to-bed 

routing of meltwater on seasonal velocity [Sundal et al., 2011; Bartholomew et al., 2012]. 

While this source no doubt releases significant heat at the ice/bedrock interface, the heat 

release is limited to the basal plane. Recent work has suggested that basal crevassing 

extends the thermal perturbation from basal water into the third dimension within the ice 

column [Harrington et al, submitted], but our model results under scenario E-GHF are 

consistently colder than measurements (Figure 9) through the entire ice column, 

suggesting more spatially distributed heating is necessary. 

We do not explicitly rule out either of the additional heat sources described above, 

which no doubt play an important role in the heat budget of the model domain and are 

likely responsible for explaining key features in observed profiles [Harrington et al, 

submitted]. However, our results show that adjustment of near-surface temperatures alone 

in accordance with measurements is also sufficient to reverse a substantial portion of the 

apparent cold bias when using model-based surface temperatures. Temperature 

adjustments in the percolation zone propagate to depth, and while they don’t have an 

impact on the already temperate basal conditions above the ELA, conductive heating 

reduces the cold temperatures from deeper in the ice sheet interior. The effect of this 

warming is realized in the ablation zone, where strong temperature gradients in thinner 

ice are reduced, and the destruction of the interior cold plug limits advective effects from 

ice flow around complex basal topography.  

Our results reveal that the surface boundary condition is a key component of the 

modeled thermal budget whose importance is likely to be magnified in the southern 

portion of the GrIS where there is evidence for reduced heat flux from below and surface 
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melting effects are amplified compared to elsewhere on the GrIS. Model simulations 

show that, integrated across the domain, the energy addition from surface boundary 

changes is over three times larger than the energy lost from reduced basal heat flux. As 

highlighted by the recent discovery of perennial liquid water under cold conditions in the 

percolation zone [Forster et al., 2014], significant limitations remain with respect to our 

understanding of meltwater generation and routing processes on the ice sheet. Thermal 

effects do not appear to be limited to shallow depths, implying that, in addition to 

influencing mass balance uncertainties [Harper et al., 2012], meltwater storage and 

refreezing may also be an important contributing factor to the ice sheet thermal profile, 

albeit given sufficient time scales.   

5 Conclusions 

In this study we have leveraged measurements near the ice sheet surface, below the 

ice sheet bed, and within the ice column to develop new observationally constrained 

boundary conditions and assess the subsequent impact of these new fields on modeled 

thermal behavior over a study reach in western GrIS. Measurements at the ice sheet 

surface and bed indicate a relative reversal in energy contribution compared to reference 

temperature and GHF datasets. Whereas commonly used, spatially distributed fields 

prescribe high heat flux and low surface temperatures through our study area, 

measurements reveal the opposite. Surface temperatures in both the percolation and 

ablation zones are measured to be 10°C warmer or more than reference output. 

Conversely, existing observations indicate geothermal heat flux <50% of that commonly 

prescribed. 
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The realization of boundary condition discrepancies between measurements and 

spatially distributed datasets in a higher order ice dynamical model indicates that the 

boundary conditions are first-order drivers of the ice sheet thermal profile. Reduction of 

geothermal heat flux alone commensurate with observation increases the modeled cold 

bias compared to measured temperature profiles and frozen basal conditions through the 

ablation zone. The recovery of warm conditions in the ablation zone under observation-

based surface conditions and large internal energy addition to the domain in model 

simulations suggests near-surface effects cannot be ignored in thermo-mechanically 

coupled model experiments.  

The future behavior of the Greenland ice sheet remains poorly constrained, due in 

part to a limited understanding of the expected basal sliding response to climate changes. 

In the absence of a universal sliding law, the assessment of future ice sheet behavior has 

been accomplished through sliding amplification experiments, whereby initial sliding 

conditions are multiplied by a constant amplification factor [Bindschadler et al., 2013; 

Nowicki et al., 2013]. Model-based tuning of basal traction to match observed velocities 

is prone to thermally induced biases which influence internal deformation, and hence 

sliding/deformational velocity partitioning. Our results indicate that the surface and basal 

boundary conditions critically dictate thermal behavior through the full ice thickness, 

necessitating careful consideration during such model initialization. Cold model 

conditions from inadequate treatment of effects near the surface may thus be manifested 

in the velocity regime through enhanced sliding, which is amplified in modeled future ice 

sheet behavior when this initial sliding condition is perturbed.    
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8 Figures  

 

Figure 1:  Study area in the context of the Greenland ice sheet. Model domain is outlined 

by the solid black line. Red squares show locations of geothermal heat flux 

measurements. Blue circles show locations of 10 m firn temperatures used for surface 

temperature adjustments. Bar charts display a comparison of Shapiro and Ritzwoller 

[2004] modeled geothermal heat flux (blue) against available direct and indirect 

measurements of heat flux (green), with heat flux values given in mW m
-2

. Yellow stars 

in the inset show the locations of boreholes drilled during the 2010-2012 field seasons. 

Red line in the inset outlines the approximate ELA at 1550 m elevation. Dashed line in 

the inset shows the profile transect upon which Figure 8 is based. Surface elevation field 

is from Bamber et al [2013]. 
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Figure 2: Reference boundary conditions (A and B) from the SeaRISE Project, and 

observation-driven boundary conditions (C and D). Surface temperatures are shown in 

(A) and (C), and geothermal heat flux fields are displayed in (B) and (D). 
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Figure 3: Workflow used for parameterizing the thermal surface boundary condition 

based on measurements. E is elevation, ELAE is the elevation of the ELA as described in 

the text, minE is the elevation of site GL11-S1, and peakE is the elevation of peak 

temperature deviation, taken from the temperature measurements in the percolation zone 

(Figure 5). The resulting temperature deviation from the reference dataset is given by dT
. 
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Figure 4: Results from the L-curve analysis used to constrain the regularization 

parameter  . A break in slope occurs at      , representing a reasonable compromise 

between the model norm ( 
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22  ) and misfit norm ( 
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Figure 5: Measured temperatures used to construct the surface temperature field. 

Ablation zone measurements are shown at sites GL11-S1 (A) and GL11-S2 (B). Red dots 

show the ablation-corrected mean temperature over the measurement period, bounded by 

maximum and minimum measurements. Vertical, dashed black line shows the reference 

surface temperature at the location of the measurements. Difference between 10m 

temperatures measured by Humphrey et al [2012] and RACMO surface temperature is 

shown in (C) as a function of elevation above the ELA. Red curve shows the 2-part fit we 

use to scale temperature deviation to our model domain. 

 

 



 79 

 

Figure 6: Results from the assimilation procedure to invert for    (A). The resulting 

modeled surface velocity field is shown in (B) and the absolute difference between 

modeled and measured surface velocity is displayed in (C). 
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Figure 7: Modeled basal temperature results from the reference case E-REF (A), E-GHF 

(B), and E-FULL (C), with surface and basal boundaries constrained by data. Color bar is 

consistent across all three panels. 
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Figure 8: Temperature fields along a transect (see Figure 1) resulting from E-REF (A), 

E-GHF (B), and E-FULL (C). The color bar is consistent for each panel. Vertical bars 

denote locations, surface elevations, and bed elevations of boreholes shown in Figure 1. 
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Figure 9: Measured and modeled temperatures at 4 sites in the ablation zone (see Figure 

1). One to three temperatures strings were installed at each site, and are shown by black 

circles, squares, and triangles. Modeled temperatures from E-REF, E-GHF, and E-FULL 

are shown as solid, dashed, and dotted red lines respectively. Measured depth to the ice 

sheet bed during drilling is indicated by the horizontal, dashed black line (the bed was not 

reached in hole GL10-S3). The approximate pressure melting temperature is shown as the 

dashed green line. 
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CHAPTER 3 

DYNAMICAL CONTROLS ON THE DRIVING STRESS ANOMALY IN WEST-

SOUTHWEST GREENLAND 

 

Abstract: 

The west-southwest sector of Greenland is marked by a region of low driving stress 

associated with inflections in the ice sheet’s surface profile. The driving stress anomaly 

(DSA) has a first-order influence on the partitioning between deformational and sliding 

motion. Previously, the DSA has been hypothesized to result from a bedrock plateau, but 

recent and more detailed radar bed imaging does not reveal a clear link between bedrock 

topography and the DSA’s surface expression. Here we investigate alternative processes 

related to surface mass balance and ice flow dynamics which may explain this feature. 

Kinematic wave analysis indicates that transient surface perturbations rapidly recover 

over decades whereas the DSA has apparently been stable for longer. Further, the 

diffusive nature of the ice sheet precludes the possibility that the DSA results from 

remote or local perturbations in surface mass balance. Assessment of ice deformation 

suggests that observed surface speeds must be attributed to increasing basal motion 

across the DSA. We hypothesize that longitudinal variations in basal sliding are critical in 

the formation of the DSA by drawing down the surface elevation to maintain mass 

conservation. The colocation of the DSA with the equilibrium line altitude (ELA) 

suggests that introduction of surface-derived meltwater to the ice sheet bed provides a 

potential mechanism for initiating changes in basal motion.   
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INTRODUCTION 

In recent years field research has focused on western Greenland (GrIS) to investigate 

the role of seasonal melt in forcing sliding perturbations (e.g. van de Wal and others, 

2008; Bartholomew and others, 2012; Doyle and others, 2014). This sector of the ice 

sheet is largely land-terminating and undergoes considerable seasonal melting with 

measured ablation rates exceeding 5 m a
-1

 in places (van de Wal and others, 2012). This 

region is therefore a logical test bed to study the forcing and response between surface 

meltwater, basal hydrology, and ice dynamics without complications from marine effects. 

The interior of west-southwest (W-SW) Greenland, however, contains a driving stress 

reduction that is anomalous relative to the regional profile of the ice sheet (Figure 1). The 

gravitational driving stress is of primary order in dictating ice sheet motion. Further, 

changes in ice thickness and surface slope which define the driving stress are critical 

controls on subglacial hydrological dynamics as they influence the potential gradient 

driving water flow (Cuffey and Patterson, 2010). The direct coupling between driving 

stress and ice flow dynamics thus warrants investigation of the processes governing the 

driving stress anomaly within this test bed study region of the GrIS. 

The reach of anomalously low driving stress in W-SW GrIS was originally identified, 

along with the northeast ice stream, to be unique features of the GrIS (Bamber and 

Layberry, 2001; Layberry and Bamber, 2001). Low driving stress in the northeast 

counterpart was attributed to a drop in basal topography, inception of streaming flow, and 

flattening of the ice sheet surface. The contrasting physical setting in W-SW GrIS 

without a dominant ice stream led the authors to attribute the low driving stress to a high 

(1000 m elevation), flat bedrock plateau (Layberry and Bamber, 2001).  
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Surface slope and thickness defining the ice sheet driving stress are complicated 

functions of processes not limited to basal topography alone. The magnitude of basal 

sliding complicates the surface expression of basal topography, enhancing the 

transmission efficiency and adjusting the phase shift at the surface to varying degrees 

depending on the wavelength of the basal disturbance (Gudmundsson, 2003; Raymond 

and Gudmundsson, 2005). Spatial variations in basal motion, manifested primarily as 

slipperiness perturbations, have also been shown theoretically to influence surface 

topography in the absence of a basal expression (Gudmundsson, 2003; Raymond and 

Gudmundsson, 2005). Such variability in stick-slip motion has recently been implicated 

in describing short wavelength driving stress anomalies on Greenland (Sergienko and 

others, 2014). 

In addition to processes at the ice sheet bed, perturbations in surface processes may 

impose a control on the ice sheet’s profile. The ice sheet is unlikely to ever attain a true 

steady state as it continuously adjusts to changes in mass balance and external forcings. 

Anomalous perturbations in surface mass balance could manifest themselves as transient 

waves in the surface profile of kinematic type (Nye, 1960, 1963a; b). Considering the 

large spatial extent of the ice sheet and relatively sparse (in both space and time) 

observational record, such a surface mass balance anomaly may not be clearly discernible 

from measurement.  

Here we investigate each of the above mechanisms and assess their plausibility as a 

governing process forming the DSA. We revisit the original hypothesis by Layberry and 

Bamber (2001) with updated basal topography to address the likelihood that it results 

primarily from a consistent topographic high. Using kinematic wave theory, we 
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investigate the ice sheet response to perturbations in mass balance to test the hypothesis 

that such surface anomalies can form directly from variations in accumulation and 

ablation. Finally, through comparison of a spectrum of reasonable deformational 

velocities with velocity observations through the DSA, we assess the plausibility that 

basal sliding and spatial gradients in ice dynamics are responsible for this anomalous 

region of the ice sheet. 

DATASETS 

We investigate regional changes in driving stress and causal forcings using recently 

updated surface and bedrock topography digital elevation models (DEMs) from Bamber 

et al (2013). The new DEMs are informed by airborne radar flightlines which, while of 

variable density over the ice sheet, generally show dense coverage over the W-SW study 

area (Bamber and others, 2013). In particular, a focused campaign as part of project 

ICEBRIDGE has elucidated surface and bedrock topography along the northern sector of 

the study domain, extending inland of Isunnguata Sermia, at a nearly unprecedented 

resolution. The DEM postings are at 1 km. Surface slope calculations from the surface 

DEM are averaged over 20 ice thicknesses. 

We use raw ICEBRIDGE flightlines to confirm the feature does not result from DEM 

processing techniques and address the direct relationship between the surface feature and 

bedrock topography (Allen, 2010). Spacing between measurements along individual 

flight transects is nominally 15 – 30 m.  

The surface velocity datasets utilized in the study come from INSAR-derived 

measurements by Joughin et al (2010). We use the 2008-2009 winter velocity posting. 

The dataset is provided at 500 m resolution. In flowline exercises, velocity observations 
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that appear compromised in the interior are replaced with plane strain calculations, 

assuming the surface velocity is composed entirely of deformation. The transition from 

INSAR-derived to plane strain calculated velocity is chosen heuristically. 

FEATURE CHARACTERISTICS 

As a whole the ice sheet generally displays a regional driving stress profile which 

increases from the divide towards the margin (Figure 1). In contrast, W-SW GrIS 

displays a driving stress profile which slowly increases from the divide to the beginning 

of the DSA 60 – 100 km from the margin, where it is punctuated by a sharp decrease up 

to nearly 50% (Figure 2). The DSA occurs in two distinct reaches extending 

approximately 250 km north from a latitude of ~65°N (Figure 1, 2). Its north-south (N-S) 

trend is perpendicular to the regional flow direction. The spatial extent of decline is 30 – 

60 km after which it increases again towards the margin.   

Driving stress minima through the DSA are of similar magnitude as reaches >150 km 

inland. Yet, despite the consistent driving stress decline through this reach of the ice 

sheet, INSAR velocity observations show mixed behavior. The lowest velocities through 

the DSA tend to follow bedrock highs and not necessarily the lowest driving stress. Large 

reaches of the DSA show continually increasing velocities despite the low driving stress. 

Flowlines through multiple outlets show continually increasing velocity from the ice 

sheet interior towards the margin, and in some instances the drop in driving stress 

corresponds with a sharp velocity increase.  

The DSA was previously attributed to a high bedrock plateau (Layberry and Bamber, 

2001), however recent updates to the bedrock DEM do not support this hypothesis. The 

onset of the DSA occurs across a spectrum of basal topography. Different reaches of the 
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southern half of the DSA correspond to rough topography, a topographic bench, and an 

apparent low, flat basal plain (Figure 2). To the north, the DSA initiates along variable 

basal topography which is lower than the southern counterpart. The absence of a 

consistent, high bedrock plateau is clear. While processing techniques between flightlines 

defining the bed DEM may render a picture of the topography which is incomplete at the 

level necessary to definitively rule out basal relief, individual flight lines themselves 

indicate the surface feature with no corresponding expression at the bed (Figure 3). 

   In contrast to the bedrock topography, the DSA shows a consistent relationship with 

a reach of reduced surface slope. DSA inception is marked by a change in ice sheet 

curvature where surface slopes decrease by up to 50% over a 20 – 25 km reach (Figure 

2). This change marks a deviation from a theoretical parabolic profile which adequately 

fits the observed ice surface over many reaches of western Greenland (Supplemental 

Material). The close association of the DSA with changes in the ice sheet surface slope 

motivates investigation of processes influencing the ice sheet surface slope in the absence 

of a dominant basal topographic control.  

PROCESSES INFLUENCING THE SURFACE PROFILE 

Here we address two hypotheses that may influence the surface profile. We first 

assess the hypothesis that the surface slope anomaly on the ice sheet is a transient 

manifestation of surface mass balance perturbations. We also investigate the extent to 

which ice dynamics may be responsible for the surface perturbation. 

Surface Mass Balance Perturbations 

We investigate the likelihood that surface profile anomalies can result from mass 

balance perturbations using kinematic wave theory. Originally developed and applied to 
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flood propagation and traffic flow (Lighthill and Whitham, 1955), kinematic waves were 

modified for the glacier setting by Weertman (1958) and Nye (1960, 1963a; b) to assess 

glacier change and response time from climate perturbations. Fields of interest, mainly 

surface height and flux changes, are addressed in terms of perturbations from an initial 

reference state. Two assumptions drive the kinematic wave formulation for ice flow: 1) 

flux is a function of thickness and surface slope ( ),( hfq  ), and 2) perturbations to the 

ice sheet are small with respect to the reference state. These assumptions allow 

linearization of the perturbed ice flux via Taylor series expansion. Consequent 

substitution in to conservation of mass yields the kinematic wave equation for ice: 
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In Equation 1, 1h  is the ice thickness perturbation from a reference state, 1a  is the surface 

mass balance perturbation, and 
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q
D  are advection and diffusion 

coefficients respectively, with  the surface slope. Variables with the subscript 1 are 

perturbed from their reference states.  The subscript 0 refers to the reference state of the 

profile, and thus 0C and 0D encapsulate the physics driving ice flow in a reference state.  

Commonly investigated along a single dimension (van de Wal and Oerlemans, 1995; 

van der Veen, 2001; Rémy and Legrésy, 2004), transient behavior in perturbed surface 

height depends on the advection and diffusion parameters ( 0C and 0D ) which are static in 

time but can be spatially variable and must be prescribed along the modeled flowline. We 

calculate these constants following the empirical approach of Van der Veen (2001), who 

first implemented this method in assessing the response of Petermann Glacier to climate 
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perturbations. Substitution of velocity given by the shallow ice approximation and 

differentiation (detailed in Appendix A) yields empirically based distributions of 0C and 

0D :  

 
00 )2( unC   (2)  

and: 
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0
0



nq
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(3)  

determined from observation. In Equations (2) and (3), n is Glen’s flow exponent, taken 

to be 3, and reference velocity, discharge and surface slope are given by 0u , 0q , and 0  

respectively. 

In kinematic wave experiments we define the reference state along a flowline in W-

SW GrIS which we take to be representative of the region (Figure 1, 4). INSAR surface 

velocity measurements define the reference velocity ( 0u ) along the profile, and thus the 

advection parameter ( 0C ) (Figure 4, 5). Prescription of the diffusion parameter is 

complicated somewhat by the fact that the reach already displays the surface slope 

anomaly and is thus in the perturbed state. We alleviate this complication by assuming 

that an idealized profile based on perfect plasticity is a reasonable representation of the 

reference state (Figure 6). We use surface slopes from this idealized profile to define 0D  

along the flowline (Figure 5).  

Comparison of an idealized profile with the observed also provides a zeroth order 

metric of the size of surface perturbation we seek to investigate. This comparison 

indicates that along the DSA, the surface profile deviation occurs over an approximately 

60 km reach and displays a maximum vertical deviation on the order of many tens to 100 



 91 

m (Figure 6). The objective of the kinematic wave experiments is to test the plausibility 

of inducing surface perturbations with a similar aspect ratio from surface mass balance 

anomalies. Perhaps most likely are scenarios whereby remote perturbations in surface 

conditions sweep across the region of interest as a transient wave.  

We explore remote surface mass balance perturbations as increases near the ice sheet 

divide, decreases near the ice sheet margin, and a combination across the full length of 

the profile. Additionally, we test local perturbations in surface mass balance as an 

extreme scenario to assess the magnitudes of perturbation necessary to induce changes in 

the surface profile. Finally, as a means of assessing the stability of the observed surface 

anomaly, we investigate the time scales of decay for an initially perturbed surface in the 

absence of a mass balance anomaly. In contrast to the previous experiments which probe 

causality of surface adjustments from mass balance perturbations, in this experiment we 

neglect causation and instead use the a priori assumption of existence to explore transient 

behavior of such a feature.  

With diffusion and advection coefficients prescribed across the profile line (Figure 5), 

we solve Equation (1) using fully implicit Backward Euler techniques to improve 

stability. The 1-D grid size is 100 m and the time step is 1 year. Unless stated otherwise, 

experiments are run for 5,000 years.  

Ice dynamics 

The primary objective in investigating ice dynamics is to assess the degree to which 

longitudinal variations in deformation and sliding are likely to exist. We concern 

ourselves primarily with ice sheet sliding and gradients therein because the surface 
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profile has been theoretically shown to be sensitive to such variability (Gudmundsson, 

2003). 

In order to assess the partitioning of surface motion in to sliding and deformation, the 

ice deformation component needs to be constrained and the remaining difference is 

attributed to sliding. This is made difficult by the dependence of deformation on ice 

temperature and other rheological factors such as impurity content and crystal orientation 

that are spatially heterogeneous and poorly constrained throughout the GrIS. Ice 

temperature measurements in the study reach are limited to a single profile at the ice 

sheet divide Dye 3 (Gundestrup and Hansen, 1984), and profiles within the ablation zone 

(Harrington and others, Temperature distribution and thermal anomalies along a flowline 

of the Greenland Ice Sheet, in review). Rheological factors impacting ice deformation are 

even more poorly constrained, limited to mechanical tests on cores (Shoji and Langway 

Jr., 1985) and modeling from inclinometry surveys at Dye 3 (Dahl-Jensen and 

Gundestrup, 1987).  

In light of the compounding uncertainties surrounding temperature and rheological 

enhancement factors, rather than use a flow model of increasing complexity (e.g. 

Meierbachtol and others, Impact of field-constrained boundary conditions on western 

Greenland’s thermo-mechanical state, in review), we investigate deformational velocity 

alone under a spectrum of conditions using the shallow ice approximation. Our 

assumption of isothermal conditions is a simplification of the ice sheet state, and shallow 

ice deformational velocity calculations are limited in considering gravitational driving 

stress alone. Yet, this simplification is justified over much of the ice sheet interior where 

the driving stress is likely to be balanced by drag at the bed (van der Veen, 2013).  
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The intent of deformation calculations is not to exactly to reproduce present ice 

behavior; such a task would be unconstrained with any state-of-the-art model as a result 

of factors not limited to those discussed above. Instead, the objective is to investigate the 

suite of temperatures and rheological enhancement factors necessary to meet velocity 

observations in order to elucidate reaches where either large changes in ice properties are 

necessary or additional mechanisms of motion (e.g. sliding) are likely. 

We assume a range of vertically isothermal temperatures and calculate the rheological 

enhancement necessary to achieve the measured surface velocity following 

rearrangement of the vertically integrated shallow ice approximation: 

   
obs

n

d uhTAnE 
 

1
)(21  (4)  

where E is a rheological enhancement factor, )(TA is a vertically averaged, temperature-

dependent flow rate factor, h is the local ice thickness, and n is the flow exponent which 

we take to be three. We perform this calculation along the same reference flowline used 

in the kinematic wave experiments. Calculation of the range of enhancement factors 

necessary to match the velocity observations under the limiting assumptions permits 

logical assessment of the divergence between surface velocities and potential 

deformational velocity under static enhancement factors. It also allows a first-order 

assessment of the rheological softening necessary to match observations across the DSA 

in order to inform sliding inferences.     

RESULTS 

Surface Mass Balance Perturbations 

Kinematic wave experimental results are subject to uncertainty stemming from the 

parameterization and smoothing of advection and diffusion coefficients along the profile 
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as well as from the use of an idealized profile in the diffusion parameterization. 

Sensitivity testing with less smoothing of constants 0C  and 0D  indicates that the effects 

from noisier prescriptions have little impact on the perturbed height results. The 

magnitude of 0D , up to 4x10
7
 m

2
 a

-1
 over the length of the profile, is corroborated by 

previous work in Greenland (van der Veen, 2001), and Antarctica (Rémy and Legrésy, 

2004). Considering that local asperities in slope are more likely to diffuse under thick ice 

with a corresponding higher driving stress than a thinner ice equivalent, we believe the 

spatially variable coefficients to be physically justified. Even so, experimentation with a 

spatially constant diffusion parameter of the same of order magnitude (~3x10
7
 m

2
 a

-1
) as 

previous research only confirms interpretation from the results below. 

Remote mass balance forcing 

Results from a mass balance perturbation applied near the margin are illustrated in 

Figure 7 (A, D). In response to a 0.2 m a
-1

 decrease in mass balance (i.e. a 0.2 m a
-1

 

increase in ablation near the terminus), the perturbed surface approaches a steady state 

after 5,000 years. A maximum surface height drop of ~11 m occurs near the terminus and 

gradually propagates inland towards the divide.  

A surface mass balance increase near the divide is manifested in an increase in profile 

elevation along the entire transect (Figure 7 B, E). After 5,000 years surface height has 

increased from 18 m at the terminus to over 45 m close to the divide. Despite the 

reasonably sharp change in surface mass balance, which is imposed as a logistic curve 

over 35 km, the aspect ratio of the perturbed height is tens of meters over many hundreds 

of kilometers.  
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In response to a mass balance perturbation which varies from -0.2 to 0.2 m a
-1

 over a 

distance of 25 km (Figure 7, panel C), the initial height response is an increase inland of 

the mass balance perturbation intercept, and a decrease below it (Figure 7, panel F). 

However, advection draws the mass balance increase towards the margin, and after some 

hundreds of years the surface elevation recovers in reaches experiencing a mass balance 

decrease. A new steady state is established after 5,000 to 10,000 years, and while the 

vertical magnitude of surface perturbation approaches the metric (~70 m), this change 

occurs over the entire profile. 

Local mass balance forcing 

Profile adjustment in response to a localized surface mass balance forcing with an 

amplitude approaching -5 m is presented in Figure 8. A surface mass balance perturbation 

of this shape and amplitude lacks observational justification, but represents an extreme 

scenario to test the ability of a surface perturbation to be induced from even unrealistic 

changes in accumulation or ablation. Twenty years from the inception of mass balance 

perturbation, the surface elevation decreases by up to 10 m, and the lateral extent of 

perturbation is over 100 km. The asymmetry of the surface height perturbation grows 

with time, as does the aspect ratio. To induce a vertical perturbation on the order of 60-70 

m requires a horizontal scale of many hundreds of kilometers. 

Initial thickness perturbation 

Results from the decay of a Gaussian surface disturbance with a maximum thickness 

perturbation of ~65 m show rapid dissipation of the feature. The disturbance recovers by 

over 50% in the first 5 years of simulation, with mass conservation satisfied by lowering 

of the shoulders away from the initial disturbance (Figure 9). After twenty years the 
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disturbance has recovered from its initial peak to a minimum elevation of -23 m below 

reference, and measurable drawdown >1 m has extended 85 km inland from the location 

of peak disturbance. Over this time interval the local elevation trough is advected 12 km 

towards the terminus. 

Ice Dynamics 

Plane strain calculations show that 200 km inland of the margin, surface velocity 

measurements are achieved with isothermal ice temperatures ranging from -8 to -5 °C 

under observation-guided enhancement factors between 2 – 3 (Dahl-Jensen and 

Gundestrup, 1987) (Figure 10). In the absence of deformation enhancement, deformation 

does not satisfy surface measurements even under temperate conditions. If the 

observation-based enhancement factors are assumed spatially constant, the increase in 

surface velocity is accommodated by a gradual increase in temperature until 

approximately 20 km from the beginning of the DSA. The inception of decreasing 

driving stress forces a sharp rise to temperate conditions.  

The beginning of the DSA along the reference flowline is accompanied by a 

continued increase in measured surface speed which is at odds with the drop in driving 

stress. In order to achieve observed surface speeds, the ice column must soften by an 

order of magnitude or more over <20 km (Figure 10). If a constant enhancement value (

3E ) is assumed, the disparity between calculated deformational velocity and the 

velocity at the surface reaches 50 m a
-1

 through the DSA even when conditions are fully 

temperate (Figure 10). 

The 30 km below the DSA to the ice margin is characterized by oscillating 

rheological enhancement as a result of rough bedrock topography, and hence large 



 97 

changes in ice thickness. The large disparity between driving stress and surface velocity 

in the 8 – 10 km nearest the margin results from thin ice <100 m thick at the extreme 

terminus. 

DISCUSSION   

Surface Mass Balance Perturbations 

Our kinematic wave experiments with flow parameters tailored to the study area 

demonstrate the role of diffusion in dictating the spatial response of topography to 

surface mass balance perturbations. Mass redistribution resulting from surface processes 

occurs predominantly through decay as opposed to an advective kinematic wave, which 

is corroborated by previous synthetic analysis of transient surface response using 

perturbation methods (Gudmundsson, 2003). Under such strong diffusion, the horizontal 

scale required (hundreds of kilometers) to achieve a vertical surface disturbance up to 

100 m in the vertical is an order of magnitude larger than that observed ( tens of 

kilometers) across the DSA. 

As displayed in the initial perturbation experiment, slope-driven diffusion enhances 

the initial response to a perturbed surface so that rates of elevation change are driven 

almost entirely by diffusion rather than advection. High rates of change (on the order of 

meters per year) and short recovery time scales of decades indicate that such 

perturbations would be quickly eliminated. The absence of large surface elevation change 

measured by satellite-derived laser altimetry in land-terminating western Greenland 

(above 65° N) suggests the region is not in the early stages of rapid recovery from a 

transient perturbation (Pritchard and others, 2009). Thus, spatial and temporal 

considerations strongly suggest that diffusion precludes the DSA from being a transient 
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anomaly resulting from mass balance disturbances. Rather, it is most probable that the 

feature is a manifestation of processes within the ice or at the bed.    

Ice Sheet Dynamics 

The growing mismatch between high velocities and low driving stress at the DSA is 

clear, but the mechanism(s) responsible for this discrepancy are not readily apparent. 

Anomalously low ice thickness from errors associated with surface and bed DEMs could 

bias calculated driving stress and deformational velocity. However, achieving the 

observed velocity through deformation under such low surface slopes would require ice 

thickness up to 40% (many hundreds of meters) greater than the DEM. Errors of this 

magnitude are larger than those reported over the DSA  and unsubstantiated in this region 

of relatively high flightline density (Bamber and others, 2013).  

Our results show matching velocity observations by deformation with such low 

driving stress would require order-of-magnitude ice softening, but this lacks physical 

justification. Large scale change in rheology requires rapid realignment of crystal 

orientation or fabric development which has little observational basis. Achieving ice 

softening at the necessary magnitudes from increased water content is unsupported by 

laboratory experiments (Duval, 1977). A more tenable mechanism for recovering the 

measured velocity along the DSA is therefore an increase in basal sliding. 

The location of the anomalous reach in the context of the glaciological facies is 

suggestive of potential physical mechanisms permitting high velocity despite the low 

driving stress. The northern reaches of the DSA occur along an elevation band which 

aligns closely with the measured long-term mean ELA (van de Wal and others, 2012) 

(Figure 2). While mass balance measurements are unavailable to the south, output from 
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the regional climate model MAR (Tedesco and others) shows the 55 year mean ELA  is 

also colocated with the DSA (Figure 2). The association of the DSA with the ELA in the 

study area infers dynamical change from the introduction of seasonally-generated surface 

meltwater to the bed. Remotely sensed, late-summer ice surface accelerations provide 

anecdotal evidence for sliding enhancement related to meltwater forcing in the high 

elevation reaches of the ablation zone (Palmer and others, 2011). 

Assuming plane strain, an increase in vertically averaged velocity must be met by 

surface drawdown in order to satisfy mass conservation. Based on the above, we surmise 

that an increase in depth averaged velocity from enhancement in basal motion near the 

ELA has a corresponding impact on the surface profile and thus is a key process in the 

formation of the DSA. Such longitudinal sliding variations were implicated to explain 

surface variations and deformation of internal radar reflectors at Byrd Station, Antarctica 

(Whillans and Johnsen, 1983).  

Previous works have suggested that the majority of the GrIS requires a strong sliding 

component to meet observed velocities (Rignot and Mouginot, 2012; Sergienko and 

others, 2014). Our analysis, however, indicates that under reasonable assumptions of 

temperature and rheology derived by observation (Gundestrup and Hansen, 1984; Shoji 

and Langway Jr., 1985; Dahl-Jensen and Gundestrup, 1987), it is plausible that 

deformation is the dominant component of motion above the DSA. This does not imply 

that basal slip is absent above the feature, but rather suggests that a transition from 

deformation-dominated motion to a regime with a greater fraction of sliding occurs 

across the DSA. Our hypothesis requires only that spatial gradients in sliding influence 
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the surface profile, but does not necessarily assume purely no-slip behavior above the 

ELA.   

Basal sliding likely increases at the inception of the DSA, and we hypothesize that 

these longitudinal gradients in basal motion may impact driving stress alone. However, it 

is probable that the complexity of ice flow dynamics precludes exclusive control of the 

DSA from a single physical process. Basal melt rates and the fraction of the bed at 

temperate conditions may affect the integrated basal water supply and hence the 

propensity for sliding. The location of the ELA up to 100 km inland of the ice margin 

could also render a greater reach of W-SW GrIS sensitive to meltwater-related dynamics 

than other regions of the ice sheet with a lower ELA close to the ice sheet edge. The 

complicating role of additional factors underscores the spatial heterogeneity of the GrIS 

and warrants further research not only to definitively constrain the regional perturbation 

in driving stress, but also to better understand why this type of anomaly is limited to W-

SW GrIS.  

CONCLUSIONS 

We find that the region of anomalously low driving stress in W-SW GrIS, previously 

interpreted to be controlled by a bedrock plateau, is more strongly associated with 

inflections in the ice sheet surface profile leading to low surface slope. While the absolute 

magnitude of slope change is small (tenths of a degree), the fractional change is 

substantial and induces correspondingly large driving stress perturbations. The close 

association of driving stress with surface slope, and the lack of a consistent bedrock 

expression inducing such a change, motivate the investigation of other processes 

responsible for the anomalous region. 
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Kinematic wave experiments along a profile through the DSA illuminate the diffusive 

nature of the ice sheet response to surface mass balance perturbations. Mass balance 

changes propagate through diffusive decay as opposed to advective transport, limiting 

surface curvature stability. Diffusion rapidly eliminates initial surface perturbations over 

a period of decades. We thus conclude that the observed surface expression is not a 

transient response to regional surface mass balance anomalies.  

Reduction in driving stress correlative with increasing surface velocity across much 

of the DSA necessarily dictates that a large change in ice flow dynamics take place. We 

surmise this change in dynamics is a key process manipulating the surface profile, and 

hence the DSA. The proximity of reduced driving stress with respect to the ELA suggests 

that the inception of meltwater penetration to the bed could be a plausible mechanism 

initiating such a dynamical shift. If correct, the potential modulating effect of meltwater-

related sliding on driving stress presents a negative feedback that should be considered by 

future research on this heavily studied region of the ice sheet. 
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FIGURES 

 

 
Figure 1: Driving stress for the Greenland ice sheet. ICEBRIDGE flight line in Figure 3 

is illustrated as the solid black line. Dashed black line is a flowline extending inland from 

the ice sheet terminus. The DSA is bracketed by the black box, which denotes the extent 

of panels in Figure 2. 
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Figure 2: Driving stress (A), Bamber et al (2013) bedrock topography (B), surface slope 

averaged over 20 ice thicknesses (C), and 2008-2009 INSAR-derived winter surface 

velocity (Joughin et al, 2010) (D) over the W-SW GrIS sector. Driving stress contours at 

60, 90 and 120 kPa are shown in each panel. Hatch marks on contour lines indicate the 

direction of decreasing driving stress through the DSA. Solid white line in (A) shows the 

55 year mean ELA output from MAR. Dashed white line in (A) is the mean ELA from 

van de Wal et al (2012). Dashed and solid black lines indicate the same flowline and 

ICEBRIDGE flight profiles displayed in Figure 1. 
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Figure 3: ICEBRIDGE flight line corresponding to the solid black line in Figure 1. 

Surface and bed topography are shown in solid black. Surface slope, averaged over 20 ice 

thicknesses, is displayed in gray. 
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Figure 4: Surface and bedrock topography (A) and surface velocity (B) along the 

flowline denoted by the dashed black line in Figure 1. INSAR measurements define the 

velocity profile until the visual integrity is compromised. Thereafter, velocities are 

calculated assuming plane strain and displayed in (B) as the dashed line. 
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Figure 5: Advection (A) and diffusion (B) coefficients calculated based on the 

topography and velocity profiles in Figures 6, and 4 respectively. Solid black line shows 

the raw calculation, and red lines are smoothed values used in experiments. 
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Figure 6: Comparison of observed and idealized profiles along the flowline shown in 

Figure 1. Observed surface elevation is shown in solid black in (A) and the idealized 

equivalent is displayed as dashed red line. The difference between the two profiles is 

displayed in (B), with the perturbation corresponding to the surface anomaly in question 

is shaded in red.  
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Figure 7: Results from three separate remote surface mass balance perturbation 

experiments. Surface mass balance perturbations are defined by logistic functions shown 

in the top row (panels A, B, and C) with equal y-axis scales in each panel. Surface height 

perturbation responses at snapshots in time are shown in the bottom row (panels D, E, 

and F). Color scale corresponds to years from the initiation of mass balance perturbation 

and is shown in the legend. Panels A and D correspond to a mass balance perturbation 

representing increased ablation near the ice sheet margin. Panels B and E correspond to 

an increase in accumulation near the ice sheet divide. Panels C and F display results from 

an increase in accumulation from the ice sheet divide to a distance of 100 km, after which 

the perturbation sharply decreases for the remainder of the profile.  
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Figure 8: Results from the local surface mass balance perturbation experiment. Surface 

mass balance is a Gaussian pulse reaching a minimum value of -5 m a
-1

 (A). The surface 

height response is shown at different snapshots in time in (B). The color scale shows the 

time (in years) from start of the surface mass balance perturbation, and is shown in the 

legend. 
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Figure 9: The recovery of an initially disturbed surface profile in the absence of a surface 

mass balance anomaly. Curves show the perturbed height at different snapshots in time 

from the initial state at 0 years to 1000 years. 
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Figure 10: Dynamical calculations along the flowline in Figure 1. Driving stress is 

shown in (A). INSAR-derived velocity (black line) and plane strain velocity (red) are 

shown in (B). Plane strain velocity is calculated following a constant enhancement factor 

E=3 and the temperature profile shown as the solid red line in (C). Across the DSA, 

temperate conditions are imposed. Panel C displays the necessary rheological 

enhancement factor in order to match the given measured surface velocity in (B) under 

isothermal temperature (y-axis). Color bar indicates the enhancement factor magnitude. 

Solid and dashed red contours indicate the lines of constant enhancement factor at E=3 

and E=2 respectively. Flat contours beyond 220 km result from the fact that surface 

velocity is calculated from plane strain in the absence of velocity observations. 
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SUPPLEMENTAL MATERIAL 

Comparison of Parabolic Surface Profiles to Observed Greenland Surface Elevation 

We address the anomalous surface profile through the DSA by comparison against a 

theoretical parabolic profile of the form: 

 ,)()( 5.0xLCxh   (S1)  

where L is the length of the profile and 
g

C
yield



2
 with the yield stress given by yield , 

gravitational acceleration g , and ice density  . Here we compare the parabolic profile to 

four additional, randomly selected flowlines along western GrIS. The locations of the 

flowlines on the ice sheet are displayed in Figure S1.  

Figures S2 – S7 (corresponding to flowlines A – D in Figure S1) indicate differences 

between observed surface topography and theoretical. A flowline through the DSA is 

indicated in Figure S6. North of the DSA, differences between the observed surface and 

theoretical profile are generally less than 50 m. A consistent trend in the deviation 

between observed and theoretical surface profiles is evident in Figure S2, and may result 

from complications associated with the marine-terminating nature of the flowline. In 

contrast to the flowline through the DSA (Figure S6), observed surface deviations from 

theoretical that are greater than ~50 m generally coincide with sharp changes in bedrock 

topography of magnitude 500 m or more (eg. Figure S3 at 90 km or Figure S4 at 25 – 50 

km). The large surface deviation coincident with the DSA is of broader extent, and the 

magnitude of deviation is equal to or greater than the maximum deviation in the other 

displayed profiles. This is particularly notable considering the lack of complex bedrock 

topography in the flowline through the DSA. 
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South of the DSA, the observed surface profile displays behavior which strongly 

deviates from theoretical. Large scale changes in surface topography are evident below 

~1800 m elevation. Limited bedrock topography suggest that this behavior may be 

related to large scale bedrock relief on the order of 800 m through the profile.  

Empirical Evaluation of Advection and Diffusion Parameters 

In the empirical approach to calculating advection and diffusion parameter we 

implement the shallow ice approximation to solve for the reference velocity ( 0u ): 
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(S2)  

where A  is the isothermal flow rate factor,   is ice density, and g  is the acceleration 

due to gravity. Substitution of Equation (A1) in to the relation for discharge 000 huq  , 

and differentiation with respect to h  yields: 

 
00 )2( unC 
 (S3)  

where 0u is the reference velocity along the profile length. Equation (A2) indicates that 

kinematic waves travel down-glacier at a speed equal to 5 times the reference velocity for 

the commonly assumed case where 3n . Similarly, substitution and differentiation with 

respect to   yields: 
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(S4)  

an expression for the diffusion coefficient which can be determined from observation. 

To develop advection and diffusion relations using the observation-based framework, 

we extract topography and surface velocity along a typical flowline through a reach of 
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western Greenland which displays the anomalous surface feature (Figure 1, 4). We 

assume an idealized surface profile along the flowline following perfect plasticity 

(Cuffey and Patterson, 2010): 

 ,)()( 5.0

0 xLCxh   (S5)  

where L is the length of the profile and 
g

C
yield



2
 is a constant chosen as 3.2 to be a 

best fit match over the observed surface profile. This corresponds to a yield stress ( yield ) 

of 46 kPa. This yield stress is low compared to calculated driving stress values, likely as a 

result of the flat bed assumption in the perfect plasticity model. Nevertheless, in the 

present case we are interested in the deviation of the observed profile from a plausible 

idealized surface. Experimentation with alternative artificial prescriptions of the surface 

incorporating bedrock topography continue to show a strong deviation at the DSA. No 

synthetic geometry will perfectly match the observed away from the DSA and we choose 

the perfect plasticity assumption with low yield stress as it provides a best-fit match over 

the bulk of the profile, and hence provides realistic surface slopes close to observation. 

Prescription of the synthetic surface with an alternative idealized model has a negligible 

impact on the results.    

With velocity measurements, surface topography and slope from the idealized 

scenario, we calculate the advection and diffusion constants across the profile from 

equations (A2) and (A3). To alleviate the introduction of artificially high gradients 

resulting from the amplification of noise in the data we apply a Gaussian filter with a 

standard deviation ( ) of 5 km to the advection and diffusion profiles. This yields 

smoothed representations of the advection and diffusion parameters describing the 
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reference state of flow across the profile. Conceptually, these profiles are logical with 

respect to the ice sheet. In the ice sheet interior, thick ice and low surface slopes mean 

diffusion strongly influences the surface profile. Towards the ice sheet margin, thinning 

ice, increasing slopes, and increasing velocity amplify the importance of advection at the 

expense of diffusion. However, because surface velocities along the profile fail to exceed 

~120 m a
-1

, the advection coefficient remains relatively small compared to previous work 

(van der Veen, 2001).  

  



 119 

 

Figure S1: Locations of the flowlines shown in Figures S2 – S6 overlain on 2008-2009, 

INSAR-derived surface velocity. 
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Figure S2: Surface and bed elevation (A), Surface slope (B), and the difference between 

observed and theoretical profiles (C) corresponding to flowline S2 in Figure S1. Red 

dashed lines in panels (A) and (B) correspond to theoretical parabolic topography. Solid 

black lines are observed surface and bed topography in panel (A), and surface slope in 

(B). 
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Figure S3: Same as Figure S2, but for profile S3. 
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Figure S4: Same as Figure S2, but for profile S4. 
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Figure S5: Same as Figure S2, but for profile S5. 
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Figure S6: Same as Figure S2, but for profile S6. 
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Figure S7: Same as Figure S6, but for profile S7. 
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APPENDIX A 

BOREHOLE IMPULSE TEST EXPERIMENTS 

 

Introduction 

This chapter presents results and discussion from hydraulic impulse tests performed 

in boreholes drilled on the GrIS. Impulse tests were conducted to satisfy four scientific 

objectives pertinent to building a conceptual model of the GrIS subglacial hydrologic 

system: 

1) Assess hydrologic connectivity along the ice sheet bed at small (hole-to-hole) 

spatial scale. 

2) Investigate the hydraulic capacity of the basal system and time/space variability 

there-in. 

3) Elucidate processes by which the basal hydrologic system accommodates flux 

perturbations. 

4) Identify englacial water transport pathways. 

In summary, significant spatial heterogeneity at the site scale (10s of m) was evident 

in test responses across all drilling sites. These dynamics were manifested in differential 

connectivity between boreholes in response to testing and variable capacity to 

accommodate flux perturbations at the ice sheet bed. This consistent heterogeneity 

suggests that water flow is concentrated in discrete elements along the ice sheet bed as 

opposed to flow through a widespread sediment layer. Rapid transient effects in response 

to continued perturbation during testing show that subglacial drainage elements with a 

reduced hydraulic capacity can rapidly evolve to accommodate variations in flow along 
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the bed. The time scales for such evolution preclude enlargement of existing features by 

meltback of the overlying ice roof. Instead, rapid readjustment of local drainage elements 

may take place through mechanical processes. This enlargement of features along the bed 

enhances flow capacity, facilitates connection with adjacent regions of the basal 

hydrologic system, and may temporarily increase the fraction of bed in contact with basal 

water. In this way active recovery and a drop in basal pressure can accompany basal flow 

perturbations in the absence of a dominant melting component.  

Methods 

Borehole impulse tests perturb the basal hydrologic system by artificially raising the 

borehole water level. Three types of impulse tests were performed in boreholes drilled to 

the bed during the three field seasons, each of which differs in magnitude and duration: 

1) Drilling breakthrough tests: Borehole drilling results in a hole which is water-

filled to the surface during drilling and introduces a short duration, high 

magnitude (11% above overburden pressure) impulse to the basal system upon 

intersection. Drilling breakthrough tests measure the borehole water level in 

response to initial intersection with the basal system.   

2) Slug tests: Slug tests are repeatable, low magnitude, short duration impulse tests 

in which a set volume of water is rapidly injected into the borehole and the 

subsequent water level recovery is documented.  

3) Injection tests: Injection tests are long duration impulse tests in which water is 

pumped into the test hole at a continuous rate for a set period of time. 

In this section we describe the instrumentation necessary to carry out such tests and 

provide methodology for experiment conduction. 
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Instrumentation 

Borehole water levels were measured using pressure transducers emplaced at 

specified depths in boreholes. Voltage output by transducers was converted to meters of 

water above the sensor following field calibrations described below. If necessary, depth 

to water was calculated by subtracting the sensor water level output from the depth of the 

sensor below the ice surface, which was measured by meter marks on the transducer 

cable.  

In 2010, Omega PX26-015GV pressure transducers with a pressure range of 0-15 

pounds per square inch (psi), equivalent to 0-10.54 m of water above the pressure 

transducer, were used in all impulse experiments. In 2011, Omega PX209-060GI pressure 

transducers with a pressure range of 0-60 psi (0-42.18 m of water equivalent above the 

pressure transducer) were used in impulse experiments. The same 0-60 psi pressure 

transducers were used in 2012, with one additional 0-200 psi pressure transducer used for 

the large magnitude (>100 m) water level changes during drilling breakthrough tests. 

Pressure transducers logged voltage output in the 0 – 2000 mV range to a Campbell CR-

10X datalogger at 4 digit precision, thus the lowest possible output resolution was 1 mV. 

This corresponds to approximately 0.05% of the pressure transducer output range, 

resulting in lowest end-member water level resolutions of 0.005, 0.02, and 0.07 m for the 

15, 60, and 200 psi pressure transducers respectively. Depending on the anticipated time 

before data download, pressure transducers logged data at either 1 second or 2 second 

intervals. All pressure transducers were calibrated in the field using a 4 – 6 point 

calibration by lowering sensors to known depths below the water surface, and measuring 
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voltage for one minute at each depth. Transducers were kept cold to reduce erroneous 

fluctuations arising from thermal equilibration. 

Pressure transducers were soldered to the ends of 250 m lengths of Cat-5 cable, which 

was wired to the CR-10X datalogger at the ice surface. Cat-5 cable was manually marked 

at 1 m increments to facilitate depth to water calculations described above. To ensure a 

weather proof connection, the pressure transducer and solder joint were housed in PVC 

pipe and potted in clear epoxy. 

When conditions permitted, water levels were measured in multiple boreholes during 

impulse experiments. This was achievable in shallow holes near the margin which 

remained open for a number of days. However, rapid borehole closure in cold ice at deep 

sites generally precluded measurement in multiple holes. All pressure transducers output 

to a central data logger, eliminating timing offsets.   

Drill Breakthrough Tests 

During drilling pressure transducers were placed in the borehole to monitor changes 

in water level occurring from intersection with englacial features and the basal hydrologic 

system. Water level changes before the drill reached the ice sheet bed were interpreted to 

result from intersection with an englacial hydrologic feature. Thus, identification of 

hydrologic transport or storage features in englacial ice required that water level 

monitoring persist through the entire drilling process.    

Pumping Tests 

A set discharge was injected in to a test hole during pumping tests by pumping water 

from nearby surface streams. This was achieved using a single sump pump or 

combination of pumps in parallel. Injection discharge was measured prior to and after 



 130 

testing by measuring the time to fill a series of 5 gallon buckets. Discharge varied 

between 1.26x10
-3

 – 4.98x10
-3

 m
3
/s between tests but was consistent in pre- and post-test 

measurements. Borehole water levels were measured prior to testing for as long as 

possible (but at least 10 minutes) to determine background trends.     

Slug Tests 

Borehole slug tests were performed by rapid injection of a set volume of water in to 

the borehole. Test volumes were typically 150 – 170 liters (L), although some tests were 

performed using a smaller 75 L volume to test borehole response to perturbations of 

varying magnitude. The injection method of rapidly pouring water in to the hole from the 

surface took fewer than 10 seconds. As with pumping tests, background water levels 

were measured prior to testing.     

Challenges 

 Temporary instrument installation for impulse testing was complicated by the 

propensity for sensors to freeze to borehole sidewalls. While measures were taken to limit 

sensor freeze-in, some data loss occurred as a result of water levels dropping below the 

level of sensor placement after freezing. 

In addition to sensor freezing, a significant worry in performing tests was the tangling 

of multiple cables in a single borehole. This concern guided the methodology of slug and 

pumping tests. Such tests are commonly performed by submergence of a sealed cylinder 

in the case of slug tests, and by extracting water from the borehole in the case of pumping 

tests. However, these methods were logistically unfeasible in the field.  

Results 
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Over the course of the three field seasons, 41 slug tests, 10 pumping tests, and 23 

drilling breakthrough tests were conducted at the margin, interior, and interior trough 

sites. Data set summaries are presented in Tables A-1, A-2, and A-3 for drilling 

breakthrough, pumping, and slug tests respectively. Below, results for each of the three 

impulse test types are reported. The chapter concludes with a brief discussion 

synthesizing the data. 

Drilling Breakthrough Tests 

At the ice sheet margin six of 13 holes showed a water level decline when the bed 

was reached. Water levels declined by as much as 25% of ice overburden pressure (head 

drop of 32.6 m) in response to bed intersection. Decay times in breakthrough tests at the 

margin were long, taking up to 2 hours for complete drawdown. In contrast, all boreholes 

drilled in the inland settings showed a water level drop when the drill intersected the bed. 

The magnitude and rate of water level decline in boreholes varied between holes and 

sites. In the inland sites, water levels dropped to levels corresponding to 92 – 96.5% of 

ice overburden pressure (55 – 124 m). Drilling breakthrough responses in the inland 

trough site also showed water level drops ranging from 52 – 72 m, but in this thicker ice 

the borehole water level stabilized near or above ice overburden pressures. Drawdown 

times in the inland setting were much more rapid than the margin counterpart. The 

longest response time was 18 minutes, and water levels drew down in an as little 2 

minutes before reaching new equilibrium. Assuming a constant borehole radius of 0.11 

m, the subglacial system was able to accommodate up to 4.7 m
3
 of water in response to 

drawdown during a breakthrough event. Peak discharge rates during drawdown reached 

0.08 m
3
/s. 
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The spatial variability measured during drilling breakthrough events suggests that the 

borehole water introduced during intersection with the bed is accommodated not by large 

scale radial flow, but by discrete drainage elements within the basal network. For 

example, while drilling hole GL11-1C, water levels in holes GL11-1A and GL11-1B 

were monitored. In response to intersection with the basal system the water level in 

GL11-1C drew down 75.4 m over the course of one minute, establishing an equilibrium 

at ~92% of overburden pressure (Figure A-1). Coincident with this large impulse, the 

water level 27 m away in GL11-1B rose by ~0.77 m, and exhibited damped oscillations 

as it recovered to equilibrium. Hole GL11-1A, located 29 m from GL11-1C, showed no 

response. 

Borehole connection with englacial hydrologic features was observed in four 

boreholes, manifested as water level drops in the drill hole prior to reaching the ice sheet 

bed. Englacial feature intersection was limited to holes at the ice sheet margin. Figure A-

2 shows borehole water level behavior during drilling GL10-2C. Three separate 

intersection events at elevations of 485, 483, and 472 m (corresponding to 79, 81, and 92 

m below the ice surface) occurred as evidenced by sharp water level declines. The 

borehole water level stabilized at 5 m below the surface prior to dropping again when the 

drill intersected the ice sheet bed, suggesting that at least one of the englacial connections 

was an active hydrologic pathway. In other instances, intersection of englacial features in 

the drill hole induced a water level response in an adjacent borehole, indicating that these 

englacial features are not isolated entities. The presence of englacial hydrologic features 

provides an additional dimension to the ice sheet hydrologic system. In boreholes which 

exhibit an englacial connection, impulse test responses are a convolution of water 
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transport through the subglacial drainage system as well as through an englacial fracture 

network. Drilling test results show that impulse tests in boreholes drilled away from the 

ice sheet margin are uncomplicated by englacial fracture flow. This does not necessarily 

preclude the existence of such englacial flow features, but we note that the persistence of 

an extensive englacial fracture network in the ice sheet interior is made difficult by cold 

englacial temperatures.    

Pumping Tests 

Two general water level type curves were observed in response to pumping in 

boreholes. In instances where the hydraulic capacity of the basal system was sufficient to 

accommodate the pumping perturbation, the borehole response was minor. Water levels 

rose slightly (less than 2 m) in response to pumping, reaching a plateau until pumping 

was terminated. This type response is displayed in a pumping test performed in hole 

GL12-2B (Figure A-3). In response to a pumping perturbation of 3.26x10
-3

 m
3
/s, 

borehole water levels rose 0.8 m and quickly plateaued after less than 2 minutes of 

pumping. The water level remained approximately static until pumping was terminated 

after 24 minutes. 

In contrast, an alternate type curve displayed a larger magnitude water level rise in 

response to pumping. This rise in borehole water level slowly plateaued and began to 

recover while pumping continued. The rate of water level recovery was consistently 

slower than the initial rise, resulting in an asymmetric rise and fall during pumping. In 

some instances continued water level recovery resulted in borehole water levels dropping 

below the pre-test level while pumping was maintained. This is exemplified in a pumping 

test performed in borehole GL11-1A (Figure A-3). In response to a pumping rate of 
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1.38x10
-3

 m
3
/s, the borehole water level rose 5 m over the initial 4 minutes. The water 

level then plateaued and declined for the remaining 65 minutes of the test. When 

pumping was terminated, the water level had dropped over 12.5 m below the pre-test 

level.       

Consistency in borehole responses was observed, as both type curves described above 

were measured in pumping tests performed at the inland and inland trough sites. As with 

drill breakthrough test responses, significant spatial variability was documented at the site 

scale. At both the inland and inland trough sites, boreholes less than 30 m apart showed 

both type responses. Heterogenous connections between holes were also evident in tests, 

as long term pumping did not guarantee the establishment of connections with adjacent 

boreholes. 

Slug Tests 

Three general types of borehole water level behavior were observed in response to 

slug testing: 

1) Overdamped water level response characterized by a long, gradual water level 

decay towards equilibrium following injection. 

2) Underdamped water level response characterized by oscillatory water level 

behavior about the pre-test water level. 

3) Hybrid type response characterized by oscillatory water level behavior imprinted 

over a slow, overdamped recovery. 

Examples of the three type responses are presented in Figure A-4. Of the 14 different 

boreholes which received slug tests across the three study regions, four boreholes showed 

consistent overdamped responses, five holes responded in an underdamped manner, and 
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five holes displayed hybrid type behavior. All type responses were measured at each of 

the three field regions. The period of oscillation in underdamped tests increased through 

the three study regions, generally following the square root of the ice thickness. In 

contrast to the rapid recovery of oscillating water levels, recovery times in boreholes 

which responded to slug tests in an overdamped manner commonly exceeded one hour. 

Over these long time scales, the recovery curve was complicated by background water 

level changes which could exceed 10 m.  

Slug tests in different boreholes at the same site location showed significant spatial 

variability at the site scale (10s of m). It was not uncommon to measure both 

underdamped and overdamped responses to slug tests in different boreholes less than 30 

m apart. This behavior was consistent in both the margin, inland, and inland trough 

regions. Coincidentally, all boreholes which displayed minor water level rise in pumping 

tests also responded to slug perturbations in an underdamped fashion. Further, boreholes 

which exhibited the larger magnitude, asymmetric water level response to pumping 

behaved in an overdamped manner when perturbed with a slug test. 

Repeat testing in boreholes suggested that while a complete mode shift from 

underdamped to overdamped (or vice versa) was unlikely, the response behavior was 

prone to adjustment depending on the background water level at time of testing. This 

temporal variability is highlighted by three slug tests performed over a four day period in 

borehole GL11-1A (Figure A-5). Slug test S1 performed in the borehole, shortly after 

drilling, showed isolated behavior; 100 minutes after injection the water level recovered 

by less than 25% of the initial slug magnitude (~0.85 m).  Two days later, a second slug 

test S2 in the same borehole showed a rapid recovery in response to the slug. The water 
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level recovered 100% of the initial slug magnitude and continued to drop below the 

expected natural water level. In a third slug test S3 the following day, water level 

behavior in the borehole showed a gradual recovery which followed the expected 

background trend, suggesting an inability of the system to accommodate the injected 

water package. Background water level at the time of test S2 was 802 m, over 2.5 m 

greater than test S3, and 15 m greater than test S1. The rapid recovery in test S2 may 

likely have been facilitated by enhanced connectivity during the period of higher water 

level which approached overburden level (estimated to range from 795.5 – 808.5 m). 

 Synthesis 

The spatial variability among all three types of impulse tests conducted supports the 

conceptual model that at the local scale water may flow largely through discrete elements 

in the basal hydrologic network as opposed to more diffusive, laminar flow through a 

homogenous till layer. Boreholes <30 m apart commonly exhibited opposing type 

responses to slug testing. Large magnitude pressure pulses associated with drilling 

breakthrough tests exhibited the capacity to influence water levels in some adjacent 

boreholes, but not others. Long duration pumping tests in boreholes showed 

heterogeneous connectivity to adjacent boreholes. This variability was generally 

consistent across all drilling sites.  

The dynamic nature of connections and rapidly changing background conditions limit 

the utility of standard hydrogeological transmissivity calculations. Such an analysis 

assumes steady background conditions, radial and laminar flow, and a homogenous, 

isotropic medium. These assumptions are all violated on the ice sheet domain. Further, 

rapid accommodation of pumping perturbations and active recovery during pumping 
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suggests that the system is driven by processes which are not accounted for in standard 

analytical techniques. This rapid transience means the effective transmissivity could vary 

by orders of magnitude over very short time scales (minutes in the case of pumping tests). 

As a result of these violations and additional processes, transmissivity values would be 

subject to considerable uncertainty and would only be representative of a small spatial 

area for an instant in time. While calculation of transmissivity is of limited utility, 

borehole response to pumping provides information regarding the flow capacity of basal 

drainage elements and the processes by which perturbations are accommodated. The 

minor borehole response to pumping in boreholes GL11-1C and GL12-2B suggests that 

the background flow through the system to which these holes are connected is likely to be 

large compared to the injection rate (1.38 – 3.26x10
-3

 m
3
/s). This is also supported by the 

rapidly recovering underdamped slug test responses in these holes. 

Adjacent to transmissive features, other boreholes showed resistant connections with 

limited capacity to transmit water as evidenced by slow draining overdamped slug test 

responses and gradual water level drops following drilling breakthrough. Yet, the 

hydrologic efficiency of the drainage elements to which these boreholes are connected is 

quite transient. In response to pumping perturbation, the efficiency of these drainage 

elements is capable of evolving over short time scales (5 – 30 minutes) to accommodate 

the injection and more, as evidenced by the active recovery while pumping is continued. 

This evolution is unable to be explained solely by enlargement of existing connections 

from meltback of the overlying ice roof. Presumably, a mechanical component may be 

invoked to increase connectivity at the bed and facilitate increased basal flux. This is 

supported by repeated slug tests, which showed an enhanced ability to accommodate the 
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perturbation when background water levels were closest to overburden levels. In this 

setting, the additional head perturbation induced by the slug may act to increase 

connectivity to other regions of the bed by mechanical separation, facilitating faster water 

level recovery. In the natural setting this provides a means of short term expansion of the 

subglacial network and increased water coverage at the bed during periods when flux 

overwhelms the existing subglacial system.   

Near the ice sheet margin drilling breakthrough tests and borehole video (not 

presented here) confirm the presence of englacial features which may act as water storage 

reservoirs or active transport pathways. While inland boreholes provide a limited sample 

size, and surface-to-bed water routing moulins are prevalent throughout the ablation 

zone, no evidence for an extensive englacial fracture network was evident in drill 

breakthrough tests away from the margin. 
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Figures 

 

 
Figure A-1: Drill breakthrough response in borehole GL11-1C. In response to the water 

level drop in GL11-1C, adjacent hole GL11-1B showed a water level rise of ~0.77 m and 

exhibited damped oscillations towards equilibrium. In contrast, hole GL11-1A, which 

was located 29 m from the drill hole, showed no response. Note the difference in y-axes 

between subplots. 
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Figure A-2: Drilling breakthrough test in borehole GL10-2C. Black line represents the 

depth to water in the drill hole, and corresponds to the left-hand y-axis. Green line 

corresponds to the depth of the drill tip, measured at discrete times as represented by 

green circles. The drill depth corresponds to the right-hand y-axis. At depths of 79, 81, 

and 92 m below the ice surface, the drill tip penetrated an englacial hydrologic feature, 

triggering a water level drop. Englacial feature intersection events are denoted by red, 

vertical dashed lines. The drill penetrated the basal hydrologic network at a depth of 

146.3 m, prompting a long water level decline which continued after the measurements 

were terminated. 



 141 

 
Figure A-3: Pumping test type responses. A) Efficient type response in which borehole 

water level showed minor rise in water level and stabilization in response to pumping. In 

this example, borehole GL12-2B received 3.26x10
-3

 m
3
 s

-1
. Pumping was initiated at time 

t = 0 s and continued until time t = 1440 s. B) Asymmetric response in which water level 

exhibited an initially rapid rise, system transmissivity enhancement a forced water level 

peak, and active recovery while pumping was continued. In this example, borehole 

GL11-1A received 1.38x10
-3

 m
3
 s

-1
. Pumping began at time t = 0 s, and continued until t 

= 4200 s. Note the difference in x- and y-axes between subplots. 
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Figure A-4: Slug test type responses indicating (A) overdamped, (B), underdamped, and 

(C) hybrid type responses. Test borehole and date of slug test are listed above the plots. 

Note the difference in x-axis. 
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Figure A-5: Time series of slug tests performed in borehole GL11-1A in 2011 on days of 

year 183, 185, 186. Expected background water level behavior in each subplot is fit to 

pre-test water levels using a first order fourier fit. The first slug test (A) was performed 

shortly after drilling was completed, reducing pre-test water level monitoring time. Pre-

test water level was highest prior to the slug test performed on day of year (B). Rapid 

water level recovery followed perturbation and continued beyond expected background 

trends. The third slug test performed on day of year 186 exhibited behavior similar to that 

on day 183 (C). Water levels generally following expected background trends indicate an 

inability of the system to accommodate the added perturbation. 
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Tables: 

Drill Hole Date 

Hole depth 

(m) 

Measured WL 

decline (m) 

Final 

WL (m) 

Final WL (% 

overburden) 

WL decline 

duration (sec) 

Oscillation 

period (sec) 

GL10-1A 6/12/2010 98 0 98 109.9 - - 

GL10-1B 6/13/2010 92.5 0 92.5 109.9 - - 

GL10-1C 6/14/2010 91 0 91 109.9 - - 

GL10-1D 6/14/2010 98.5 15.27 83.23 92.9 >1385 - 

GL10-1E 6/16/2010 91.9 9.07 82.83 99.0 316 - 

GL10-1F 6/17/2010 102 0 102 109.9 - - 

GL10-2A 6/20/2010 144 0 144 109.9 - - 

GL10-2B 6/21/2010 148.7 24.5 124.2 91.8 >6460 - 

GL10-2C 6/23/2010 146.3 21.39 124.91 93.8 >5708 - 

GL10-2D 6/23/2010 145.6 24.54 121.06 91.4 >2458 - 

GL10-2E 6/25/2010 148.7 32.63 116.07 85.8 7139 - 

GL10-3A 6/30/2010 577.3** - - - - - 

GL10-3B 7/2/2010 700.4** - - - - - 

GL11-1A 7/2/2011 457 55.6 401.4 96.5 1090 - 

GL11-1B 7/4/2011 466 71.9 394.1 92.9 <89 - 

GL11-1C 7/6/2011 460 75.4 384.6 91.9 70 45.1 

GL11-2A 7/13/2011 254.5** - - - - - 

GL11-2B 7/14/2011 821 104.7 716.3 95.9 <180 57.8 

GL11-2C 7/17/2011 816 124.2 691.8 93.2 245 - 

GL11-2D 7/18/2011 815 >40 - - - - 

GL12-1A 6/7/2012 116.6 0 116.6 109.9 - - 

GL12-1B 6/7/2012 114.5 0 114.5 109.9 - - 

GL12-2A 6/13/2012 700 72 628 98.6 1040 - 

GL12-2B 6/15/2012 715 >40 - - - - 

GL12-2C 6/17/2012 695 52.8 642.2 101.5 320 - 

GL12-2D 6/20/2012 701 52.1 648.9 101.7 950 - 

        

Table A-1: Drilling breakthrough test results. Asterisks (**) indicate boreholes which 

were terminated before the ice sheet bed. In boreholes GL11-2D and GL12-2B borehole 

water level dropped below the sensor which was frozen to the borehole sidewall. Slow 

draining boreholes (GL10-1D, GL10-2B, GL10-2C, GL10-2D) showed continuing water 

level decline when the pressure transducer was removed for basal sampling. 
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Test # Test hole 

Ice thickness 

(m) 

Initial water level 

Pumping rate 

(m3 s-1) 

Duration 

(min) 

Max head rise 

 Depth to water 

(m) 

% 

overburden (m) 

% 

overburden 

Response 

type 

1 GL10-2B 148.7 31.8 0.87 1.26E-03 58 24.5 18.31 II 

2 GL10-2B 148.7 34.4 0.85 1.33E-03 106 16.6 12.40 II 

3 GL11-1A 457.5 48.4 0.99 1.38E-03 70 5.1 1.24 II 

4 GL11-1C 459.5 76.5 0.93 1.38E-03 70 0.6 0.15 I 

5 GL12-2B 715 69.7 1.00 1.69E-03 20 0.4 0.06 I 

6 GL12-2B 715 69.7 1.00 3.26E-03 24 1.2 0.19 I 

7 GL12-2C 695 49.5 1.03 1.89E-03 153 7.2 1.15 II 

8 GL12-2C 695 58.0 1.02 4.98E-03 22 10.7 1.71 II 

9 GL12-2D 701 54.1 1.03 4.29E-03 635 12.7 2.01 II 

10 GL12-2D 701 81.7 0.98 4.98E-03 648 36.3 5.75 II 

          

Table A-2: Summary of pumping test results. Response type I corresponds to small 

magnitude head rise and water level stabilization in response to pumping. Response type 

II corresponds to asymmetric type response with larger magnitude head rise and active 

recovery during pumping. 
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Test 

# Test hole 

Injection 

volume (l) 

Response 

type Day 

Avg period of 

oscillation (sec) 

Adjacent hole 

response 

1 GL10-1D 132 UD/OD 6/14/2010 15.37 - 

2 GL10-1D 151 UD/OD 6/15/2010 12.67 - 

3 GL10-1C 132 OD 6/15/2010 - - 

4 GL10-1C 132 OD 6/15/2010 - - 

5 GL10-1D 151 OD 6/16/2010 - - 

6 GL10-1E 151 UD 6/16/2010 31.33 GL10-1D 

7 GL10-1E 151 UD/OD 6/17/2010 14.38 GL10-1D 

8 GL10-1D 151 UD 6/17/2010 23.34 GL10-1E 

9 GL10-1E 151 UD 6/17/2010 25.34 GL10-1D 

10 GL10-1D 151 UD 6/18/2010 22 GL10-1E 

11 GL10-1E 151 UD/OD 6/19/2010 - GL10-1D 

12 GL10-1D 151 UD/OD 6/19/2010 - GL10-1E 

13 GL10-2C 151 OD 6/23/2010 - GL10-1D 

14 GL10-2B 151 UD/OD 6/24/2010 24.32 
GL10-2D, GL10-

2C 

15 GL10-2D 151 UD/OD 6/24/2010 24.27 

GL10-2B, GL10-

2C 

16 GL10-2C 151 OD 6/24/2010 - 

GL10-2B, GL10-

2D 

17 GL10-2C 151 OD 6/25/2010 - 
GL10-2B, GL10-

2D 

18 GL10-2E 151 UD/OD 6/25/2010 24.31 

GL10-2D, GL10-

2C 

19 GL10-2E 151 UD/OD 6/25/2010 23.93 

GL10-2D, GL10-

2C 

20 GL10-2E 151 UD/OD 6/26/2010 24.04 
GL10-2D, GL10-

2C 

21 GL10-2C 151 OD 6/27/2010 - GL10-2E 

22 GL11-1A 151 OD 7/2/2011 - - 

23 GL11-1A 151 OD 7/4/2011 - - 

24 GL11-1B 151 UD 7/4/2011 43.32 - 

25 GL11-1B 151 UD 7/5/2011 44.14 - 

26 GL11-1B 75 UD 7/5/2011 43.66 - 

27 GL11-1B 75 UD 7/5/2011 45.03 - 

28 GL11-1A 75 OD 7/5/2011 - - 

29 GL11-1B 151 UD 7/6/2011 38.04 - 

30 GL11-1C 151 UD 7/8/2011 48.3 GL11-1B 

31 GL11-2B 151 UD 7/15/2011 58.64 - 

32 GL11-2B 151 UD 7/15/2011 55.83 - 

33 GL11-2D 151 UD 7/18/2011 63.39 - 

34 GL12-2B  170 UD 6/15/2012 54 - 

35 GL12-2C 170 UD/OD 6/17/2012 42.9 - 

36 GL12-2C 170 UD/OD 6/19/2012 47.6 - 

37 GL12-2C  170 UD/OD 6/19/2012 48 - 

38 GL12-2C  170 UD/OD 6/19/2012 47.9 - 
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39 GL12-2C  170 UD/OD 6/19/2012 47.8 - 

40 GL12-2C  170 UD/OD 6/20/2012 53.4 - 

41 GL12-2D  170 OD 6/21/2012 - GL12-2C 

       

Table A-3: Summary of slug test results. Response type UD = underdamped, OD = 

overdamped, and UD/OD = hybrid type response. 
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