19,357 research outputs found

    Hubble Space Telescope Ultraviolet Imaging and High-Resolution Spectroscopy of Water Photodissociation Products in Comet Hyakutake (C/1996 B2)

    Get PDF
    Comet Hyakutake (C/1996 B2) provided a target of opportunity for performing a systematic study of water photodissociation products in which we obtained data from three instruments on the Hubble Space Telescope (HST). The HST Goddard High Resolution Spectrograph (GHRS) was used to measure the line profile of hydrogen Lyα (H Lyα) at six locations around the coma of the comet, ranging from the nucleus to a displacement of 100,000 km, and covering different directions compared with the comet-sun line. GHRS yielded line profiles with a spectral resolution (FWHM ~4 km s^(-1)) that was a factor of 2-3 better than any previous H Lyα or Hα ground-based measurements. The Wide Field Planetary Camera 2 (WFPC2) and the Woods filter were used to obtain H Lyα images of the inner coma. The faint object spectrograph (FOS) was used to determine the OH production rate and monitor its variation throughout the HST observing sequence. The GHRS H Lyα line profiles show the behavior of a line profile that is optically thick in the core for positions near the nucleus (<5000 km) and gradually becoming more optically thin at larger displacements and lower column abundances. A composite H Lyα image constructed from four separate WFPC2 exposures is consistent with the relative fluxes seen in GHRS observations and clearly shows the dayside enhancement of a solar illuminated optically thick coma. These data were analyzed self-consistently to test our understanding of the detailed physics and chemistry of the expanding coma and our ability to obtain accurate water production rates from remote observations of gaseous hydrogen (H) and hydroxyl (OH), the major water dissociation products. Our hybrid kinetic/hydrodynamic model of the coma combined with a spherical radiative transfer calculation is able to account for (1) the velocity distribution of H atoms, (2) the spatial distribution of the H Lyα emission in the inner coma, and (3) the absolute intensities of H and OH emissions, giving a water production rate of (2.6 ± 0.4) × 10^(29) s^(-1) on 1996 April 4

    Mindful Eating: Trait and State Mindfulness Predict Healthier Eating Behavior

    Full text link
    Obesity and excess weight are significant societal problems. Mindfulness may encourage healthier weight and eating habits. Across four studies, we found a positive relation between mindfulness and healthier eating. Trait mindfulness was associated with less impulsive eating, reduced calorie consumption, and healthier snack choices. In addition, we found a causal effect of mindfulness on healthier eating. An experimental manipulation of state mindfulness led participants to consume fewer calories in a spontaneous eating task. We also found preliminary evidence that mindfulness affects eating behavior by encouraging attitudinal preferences for healthier foods. Taken together, these results provide strong evidence that mindfulness encourages healthier eating, even in the absence of specific instruction in mindful eating. These results suggest that generic mindfulness-based strategies could have ancillary benefits for encouraging healthier eating behavior

    Precise measurements of electron and hole g-factors of single quantum dots by using nuclear field

    Get PDF
    We demonstrated the cancellation of the external magnetic field by the nuclear field at one edge of the nuclear polarization bistability in single InAlAs quantum dots. The cancellation for the electron Zeeman splitting gives the precise value of the hole g-factor. By combining with the exciton g-factor that is obtained from the Zeeman splitting for linearly polarized excitation, the magnitude and sign of the electron and hole g-factors in the growth direction are evaluated.Comment: 3 pages, 2 figure

    Transforming growth factor beta (TGF beta) mediates schwann cell death in vitro and in vivo: Examination of c-jun activation, interactions with survival signals, and the relationship of TGF beta-mediated death to schwann cell differentiation

    Get PDF
    In some situations, cell death in the nervous system is controlled by an interplay between survival factors and negative survival signals that actively induce apoptosis. The present work indicates that the survival of Schwann cells is regulated by such a dual mechanism involving the negative survival signal transforming growth factor beta (TGF beta), a family of growth factors that is present in the Schwann cells themselves. We analyze the interactions between this putative autocrine death signal and previously defined paracrine and autocrine survival signals and show that expression of a dominant negative c-Jun inhibits TGF beta -induced apoptosis. This and other findings pinpoint activation of c-Jun as a key downstream event in TGF beta -induced Schwann cell death. The ability of TGF beta to kill Schwann cells, like normal Schwann cell death in vivo, is under a strong developmental regulation, and we show that the decreasing ability of TGF beta to kill older cells is attributable to a decreasing ability of TGF beta to phosphorylate c-Jun in more differentiated cells

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    Information requirements for guidance and control systems

    Get PDF
    Control or guidance system performance dependency on information handling by subsystem
    corecore