172 research outputs found

    Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    Get PDF
    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6¿×¿1020¿m-3 and electron temperatures up to 3.7¿eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4¿MW m-2 and 1024¿m-2 s-1, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency

    High heat flux capabilities of the Magnum-PSI linear plasma device

    Get PDF
    Magnum-PSI is an advanced linear plasma device uniquely capable of producing plasma conditions similar to those expected in the divertor of ITER both steady-state and transients. The machine is designed both for fundamental studies of plasma-surface interactions under high heat and particle fluxes, and as a high-heat flux facility for the tests of plasma-facing components under realistic plasma conditions. To study the effects of transient heat loads on a plasma-facing surface, a novel pulsed plasma source system as well as a high power laser is available. In this article, we will describe the capabilities of Magnum-PSI for high-heat flux tests of plasma-facing material

    LiMeS-Lab:An Integrated Laboratory for the Development of Liquid–Metal Shield Technologies for Fusion Reactors

    Get PDF
    The liquid metal shield laboratory (LiMeS-Lab) will provide the infrastructure to develop, test, and compare liquid metal divertor designs for future fusion reactors. The main research topics of LiMeS-lab will be liquid metal interactions with the substrate material of the divertor, the continuous circulation and capillary refilling of the liquid metal during intense plasma heat loading and the retention of plasma particles in the liquid metal. To facilitate the research, four new devices are in development at the Dutch Institute for Fundamental Energy Research and the Eindhoven University of Technology: LiMeS-AM: a custom metal 3D printer based on powder bed fusion; LiMeS-Wetting, a plasma device to study the wetting of liquid metals on various substrates with different surface treatments; LiMeS-PSI, a linear plasma generator specifically adapted to operate continuous liquid metal loops. Special diagnostic protection will also be implemented to perform measurements in long duration shots without being affected by the liquid metal vapor; LiMeS-TDS, a thermal desorption spectroscopy system to characterize deuterium retention in a metal vapor environment. Each of these devices has specific challenges due to the presence and deposition of metal vapors that need to be addressed in order to function. In this paper, an overview of LiMeS-Lab will be given and the conceptual designs of the last three devices will be presented.</p

    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    New linear plasma devices in the trilateral euregio cluster for an integrated approach to plasma surface interactions in fusion reactors

    Get PDF
    New linear plasma devices are currently being constructed or planned in the Trilateral Euregio Cluster (TEC) to meet the challenges with respect to plasma surface interactions in DEMO and ITER: i) MAGNUM-PSI (FOM), a high particle and power flux device with super-conducting magnetic field coils which will reach ITER-like divertor conditions at high magnetic field, ii) the newly proposed linear plasma device JULE-PSI (FZJ), which will allow to expose toxic and neutron activated target samples to ITER-like fluences and ion energies including in vacuo analysis of neutron activated samples, and iii) the plasmatron VISION I. a compact plasma device which will be operated inside the tritium lab at SCK-CEN Mol, capable to investigate tritium plasmas and moderately activated wall materials. This contribution shows the capabilities of the new devices and their forerunner experiments (Pilot-PSI at FOM and PSI-2 Julich at FZJ) in view of the main objectives of the new TEC program on plasma surface interactions. (C) 2011 Forschungszentrum Julich, Institut fur Energieforschung-Plasmaphysik. Published by Elsevier B.V. All rights reserved

    10 kHz repetitive high-resolution TV Thomson scatatering on TEXTOR

    Get PDF
    In December 2003 a new 10 kHz multiposition Thomson scattering diagnostic with high spatial resolution has become operational on the TEXTOR tokamak. The system is the follow up of the high-resolution double-pulse Thomson scattering diagnostic. The conventional ruby laser has been replaced by a 10 kHz intracavity laser system and the spectrometer detector has been upgraded with two ultrafast complementary metal-oxide-semiconductor cameras combined with a special image intensifier stage. In the initial phase of operation, a burst of 18 pulses decaying from 17 to 8 J, with a repetition rate of 5 kHz, could be extracted from the laser. At a laser energy up to 12 J per pulse, ten electron temperature and density profiles were measured with an observational error of 10% on the electron temperature (T-e) and 5% on the electron density (n(e)) at n(e)=2.5x10(19) m(-3) per spatial element of 12 mm. The resolution of the detection optics enables to sample either the full plasma diameter of 900 mm with 120 spatial channels of 7.5 mm each, or a 160 mm long edge chord with 98 spatial channels of 1.7 mm each. (C) 2004 American Institute of Physics
    corecore