26 research outputs found

    Word Embeddings via Causal Inference: Gender Bias Reducing and Semantic Information Preserving

    Get PDF
    With widening deployments of natural language processing (NLP) in daily life, inherited social biases from NLP models have become more severe and problematic. Previous studies have shown that word embeddings trained on human-generated corpora have strong gender biases that can produce discriminative results in downstream tasks. Previous debiasing methods focus mainly on modeling bias and only implicitly consider semantic information while completely overlooking the complex underlying causal structure among bias and semantic components. To address these issues, we propose a novel methodology that leverages a causal inference framework to effectively remove gender bias. The proposed method allows us to construct and analyze the complex causal mechanisms facilitating gender information flow while retaining oracle semantic information within word embeddings. Our comprehensive experiments show that the proposed method achieves state-of-the-art results in gender-debiasing tasks. In addition, our methods yield better performance in word similarity evaluation and various extrinsic downstream NLP tasks

    Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals

    Get PDF
    Natural killer (NK) cells are important for maintenance of innate immune system stability and serve as a first line of defense against tumors and virus infections; they can act either directly or indirectly and are regulated via co-operation between inhibitory and stimulatory surface receptors. The recently reported inhibitory receptor, TIGIT, can be expressed on the NK cell surface; however, the expression level and function of TIGIT on NK cells during HIV infection is unknown. In this study, for the first time, we investigated the expression and function of TIGIT in NK cells from HIV-infected individuals. Our data demonstrate that the level of TIGIT is higher on NK cells from patients infected with human immunodeficiency virus (HIV) compared with HIV-negative healthy controls. TIGIT expression is inversely correlated with CD4+ T cell counts and positively correlated with plasma viral loads. Additionally, levels of the TIGIT ligand, CD155, were higher on CD4+ T cells from HIV-infected individuals compared with those from healthy controls; however, there was no difference in the level of the activating receptor, CD226, which recognizes the same ligands as TIGIT. Furthermore, TIGIT was found to specifically up-regulated on CD226+ NK cells in HIV-infected individuals, and either rIL-10, or rIL-12 + rIL-15, could induce TIGIT expression on these cells. In addition, high TIGIT expression inhibited the production of interferon-gamma (IFN-γ) by NK cells, while TIGIT inhibition restored IFN-γ production. Overall, these results highlight the important role of TIGIT in NK cell function and suggest a potential new avenue for the development of therapeutic strategies toward a functional cure for HIV

    NKG2C+NKG2A− Natural Killer Cells are Associated with a Lower Viral Set Point and may Predict Disease Progression in Individuals with Primary HIV Infection

    Get PDF
    Natural killer (NK) cells are the first line of defense against pathogens of the immune system and also play an important role in resistance against HIV. The activating receptor NKG2C and the inhibitory receptor NKG2A co-modulate the function of NK cells by recognizing the same ligand, HLA-E. However, the role of NKG2A and NKG2C on viral set point and the prediction of HIV disease progression have been rarely reported. In this study, we determined the expression of NKG2C or NKG2A on the surface of NK cells from 22 individuals with primary HIV infection (PHI) stage and 23 HIV-negative normal control (NC) subjects. The CD4+ T cell count and plasma level of HIV RNA in the infected individuals were longitudinally followed-up for about 720 days. The proportion of NKG2C+NKG2A− NK cells was higher in subjects from the low set point group and was negatively correlated with the viral load. In addition, strong anti-HIV activities were observed in NKG2C+ NK cells from the HIV-positive donors. Furthermore, a proportion of NKG2C+NKG2A− NK cells >35.45%, and a ratio of NKG2C/NKG2A >1.7 were predictive for higher CD4+ T cell counts 720 days after infection. Collectively, the experimental results allow us to draw the conclusion that NKG2C+ NK cells might exert an antiviral effect and that the proportion of NKG2C+NKG2A− NK cells, and the ratio of NKG2C/NKG2A, are potential biomarkers for predicting HIV disease progression

    Spatial characteristics and trade-offs of ecosystem services in arid central asia

    No full text
    Ecosystem services (ESs) research is crucial for comprehending the intricate interplay between humans activities and the environment, particularly in ecologically sensitive regions like Central Asia, which straddles the transition from semi-arid to arid climates. Despite the ecological significance of these arid regions, research on ESs remains limited. In this study, we applied the InVEST model to analyze the spatial characteristics of multiple ESs, including water yield (WY), soil retention (SR), carbon storage (CS), and habitat quality (HQ), in Central Asia. Our findings unveil significant zonal disparities in the distribution of ESs and trade-offs across the region. WY, SR and WY-SR display distinct vertical zonation patterns, while CS and HQ exhibit both latitudinal and vertical zonation patterns. Trade-offs, with the exception of WY-SR, mostly exhibit a striped distribution pattern. Additionally, based on the GeoDetector approach, we identified key influencing factors, encompassing land use type, precipitation, evapotranspiration, temperature, vegetation coverage, soil depth, and soil organic matter. Notably, we discovered that the relationship between these factors and ESs, as well as trade-offs, is non-linear, with certain factors exhibiting optimal thresholds for maintaining either high or low levels of ESs and trade-offs.This study advances our understanding of ESs in the arid regions of Central Asia, offering valuable insights for regional ecosystem management and coordinated development. By shedding light on the non-linear dynamics of ESs and their response to influencing factors, it underscores the importance of further research to support sustainable development efforts in these regions. Future research can build upon these findings to develop policies and interventions that harness ESs for the benefit of the environment and local communities

    Protic vs aprotic ionic liquid for CO2 fixation: A simulation study

    No full text
    The cycloaddition of CO2 with epoxides catalyzed by ionic liquids (ILs) has been a widely ongoing studied hot topic over the years. Recent experimental research has shown that the protic ionic liquids (PILs) behave stronger hydrogen proton donating ability than aprotic ionic liquids (APILs), and can effectively catalyze the cycloaddition of CO2. Unfortunately, the mechanistic explanation remains primarily unraveled. Herein, a detailed simulation study on the cycloaddition reaction catalyzed by PIL (HDBUMim) in comparison with APIL (MeDBUMim) reaction catalysts was conducted, including the three-step route (ring-opening of PO (propylene oxide), insertion of CO2 and ring-closure of propylene carbonate (PC)) and two-step route (simultaneously ring-opening of PO and addition of CO2, and then ring-closure of PC). Based on the activation energy barrier of the rate-determining step, PIL preferentially activates PO as the optimal route for the reaction with the energy barrier of 23.2 kcal mol-1, while that of APIL is 31.2kcal mol-1. The role of HDBU+ in the reaction was also explored and found that the direct formation of intermolecular hydrogen bond (H-bond) between HDBU+ and the reactants (PO+CO2) was unfavorable for the reaction, while the cooperation with the anion Mim- to assist indirectly was more conducive. To fully consider the reaction microenvironment of ILs, ONIOM calculation was used to study the solvent effect. At last, the above conclusions were further verified by the analysis of intermediates with charge, non-covalent interaction (NCI), and atoms in molecules (AIM) methods. The computational findings show that ILs studied in this work have dual functions of catalyst and solvent, enabling a microscopic understanding of the ILs catalyst for CO2 utilization as well as providing guidance for the rational design of more efficient ILs-based catalysts

    Extraction of Sensitive Bands for Monitoring the Winter Wheat (Triticum aestivum) Growth Status and Yields Based on the Spectral Reflectance.

    No full text
    To extract the sensitive bands for estimating the winter wheat growth status and yields, field experiments were conducted. The crop variables including aboveground biomass (AGB), soil and plant analyzer development (SPAD) value, yield, and canopy spectra were determined. Statistical methods of correlation analysis, partial least squares (PLS), and stepwise multiple linear regression (SMLR) were used to extract sensitive bands and estimate the crop variables with calibration set. The predictive model based on the selected bands was tested with validation set. The results showed that the crop variables were significantly correlated with spectral reflectance. The major spectral regions were selected with the B-coefficient and variable importance on projection (VIP) parameter derived from the PLS analysis. The calibrated SMLR model based on the selected wavelengths demonstrated an excellent performance as the R2, TC, and RMSE were 0.634, 0.055, and 843.392 for yield; 0.671, 0.017, and 1.798 for SPAD; and 0.760, 0.081, and 1.164 for AGB. These models also performed accurately and robustly by using the field validation data set. It indicated that these wavelengths retained in models were important. The determined wavelengths for yield, SPAD, and AGB were 350, 410, 730, 1015, 1185 and 1245 nm; 355, 400, 515, 705, 935, 1090, and 1365 nm; and 470, 570, 895, 1170, 1285, and 1355 nm, respectively. This study illustrated that it was feasible to predict the crop variables by using the multivariate method. The step-by-step procedure to select the significant bands and optimize the prediction model of crop variables may serve as a valuable approach. The findings of this study may provide a theoretical and practical reference for rapidly and accurately monitoring the crop growth status and predicting the yield of winter wheat

    Protic vs aprotic ionic liquid for CO2 fixation: A simulation study

    No full text
    The cycloaddition of CO2 with epoxides catalyzed by ionic liquids (ILs) has been a widely ongoing studied hot topic over the years. Recent experimental research has shown that the protic ionic liquids (PILs) behave stronger hydrogen proton donating ability than aprotic ionic liquids (APILs), and can effectively catalyze the cycloaddition of CO2. Unfortunately, the mechanistic explanation remains primarily unraveled. Herein, a detailed simulation study on the cycloaddition reaction catalyzed by PIL ([HDBU][Mim]) in comparison with APIL ([MeDBU][Mim]) reaction catalysts was conducted, including the three-step route (ring-opening of PO (propylene oxide), insertion of CO2 and ring-closure of propylene carbonate (PC)) and two-step route (simultaneously ring-opening of PO and addition of CO2, and then ring-closure of PC). Based on the activation energy barrier of the rate-determining step, PIL preferentially activates PO as the optimal route for the reaction with the energy barrier of 23.2 kcal mol(-1), while that of APIL is 31.2 kcal mol(-1). The role of [HDBU](+) in the reaction was also explored and found that the direct formation of intermolecular hydrogen bond (H-bond) between [HDBU](+) and the reactants (PO + CO2) was unfavorable for the reaction, while the cooperation with the anion [Mim](-) to assist indirectly was more conducive. To fully consider the reaction microenvironment of ILs, ONIOM calculation was used to study the solvent effect. At last, the above conclusions were further verified by the analysis of intermediates with charge, non-covalent interaction (NCI), and atoms in molecules (AIM) methods. The computational findings show that ILs studied in this work have dual functions of catalyst and solvent, enabling a microscopic understanding of the ILs catalyst for CO2 utilization as well as providing guidance for the rational design of more efficient ILs-based catalysts. (C) 2020, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd

    Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings

    No full text
    Abstract Phototropism is a classic adaptive growth response that helps plants to enhance light capture for photosynthesis. It was shown that hydrogen peroxide (H2O2) participates in the regulation of blue light-induced hypocotyl phototropism; however, the underlying mechanism is unclear. In this study, we demonstrate that the unilateral high-intensity blue light (HBL) could induce asymmetric distribution of H2O2 in cotton hypocotyls. Disruption of the HBL-induced asymmetric distribution of H2O2 by applying either H2O2 itself evenly on the hypocotyls or H2O2 scavengers on the lit side of hypocotyls could efficiently inhibit hypocotyl phototropic growth. Consistently, application of H2O2 on the shaded and lit sides of the hypocotyls led to reduced and enhanced hypocotyl phototropism, respectively. Further, we show that H2O2 inhibits hypocotyl elongation of cotton seedlings, thus supporting the repressive role of H2O2 in HBL-induced hypocotyl phototropism. Moreover, our results show that H2O2 interferes with HBL-induced asymmetric distribution of auxin in the cotton hypocotyls. Taken together, our study uncovers that H2O2 changes the asymmetric accumulation of auxin and inhibits hypocotyl cell elongation, thus mediating HBL-induced hypocotyl phototropism

    The SMLR models of yield, SPAD, and AGB using the calibration set.

    No full text
    <p>The dashed line and solid line was 1:1 line as a reference and fitted line between the measured value and predicted value, respectively. The filling color of black, red, green, and blue represents the reviving stage, jointing stage, heading stage, and filling stage, respectively.</p
    corecore