11,245 research outputs found

    Anaesthesia Management of Caesarean Section in Two Patients with Eisenmenger's Syndrome

    Get PDF
    Recently two parturients with Eisenmenger's syndrome underwent caesarean section at our hospital. They were managed by a multidisciplinary team during their perioperative period. The caesarean sections were uneventfully performed, one under general anaesthesia and one with epidural anaesthesia, with delivery of two newborns with satisfactory Apgar scores. One patient died in the post-partum period, and the other did well. We discuss the anaesthetic considerations in managing these high-risk patients

    Distributed Change Detection via Average Consensus over Networks

    Full text link
    Distributed change-point detection has been a fundamental problem when performing real-time monitoring using sensor-networks. We propose a distributed detection algorithm, where each sensor only exchanges CUSUM statistic with their neighbors based on the average consensus scheme, and an alarm is raised when local consensus statistic exceeds a pre-specified global threshold. We provide theoretical performance bounds showing that the performance of the fully distributed scheme can match the centralized algorithms under some mild conditions. Numerical experiments demonstrate the good performance of the algorithm especially in detecting asynchronous changes.Comment: 15 pages, 8 figure

    Bending and wrinkling as competing relaxation pathways for strained free-hanging films

    Full text link
    An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by total strain energy minimization. For small strain gradients {\Delta}{\epsilon}, the film wrinkles, while for sufficiently large {\Delta}{\epsilon}, a phase transition from wrinkling to bending occurs. We consider competing relaxation mechanisms for free-hanging films, which have rolled up into tube structures, and we provide an upper limit for the maximum achievable number of tube rotations.Comment: 4 pages, 4 figure

    The effect of walking speed on the foot inter-segment kinematics, ground reaction forces and lower limb joint moments

    Get PDF
    Background: Normative foot kinematic and kinetic data with different walking speeds will benefit rehabilitation programs and improving gait performance. The purpose of this study was to analyze foot kinematics and kinetics differences between slow walking (SW), normal walking (NW) and fast walking (FW) of healthy subjects. Methods: A total of 10 healthy male subjects participated in this study; they were asked to carry out walks at a self-selected speed. After measuring and averaging the results of NW, the subjects were asked to perform a 25% slower and 25% faster walk, respectively. Temporal-spatial parameters, kinematics of the tibia (TB), hindfoot (HF), forefoot (FF) and hallux (HX), and ground reaction forces (GRFs) were recorded while the subjects walked at averaged speeds of 1.01 m/s (SW), 1.34 m/s (NW), and 1.68 m/s (FW). Results: Hindfoot relative to tibia (HF/TB) and forefoot relative to hindfoot (FF/HF) dorsiflexion (DF) increased in FW, while hallux relative to forefoot (HX/FF) DF decreased. Increased peak eversion (EV) and peak external rotation (ER) in HF/TB were observed in FW with decreased peak supination (SP) in FF/HF. GRFs were increased significantly with walking speed. The peak values of the knee and ankle moments in the sagittal and frontal planes significantly increased during FW compared with SW and NW. Discussion: Limited HF/TB and FF/HF motion of SW was likely compensated for increased HX/FF DF. Although small angle variation in HF/TB EV and FF/HF SP during FW may have profound effects for foot kinetics. Higher HF/TB ER contributed to the FF push- offthe ground while the center of mass (COM) progresses forward in FW, therefore accompanied by higher FF/HF abduction in FW. Increased peak vertical GRF in FW may affected by decreased stance duration time, the biomechanical mechanism maybe the change in vertical COM height and increase leg stiffness. Walking speed changes accompanied with modulated sagittal plane ankle moments to alter the braking GRF during loading response. The findings of foot kinematics, GRFs, and lower limb joint moments among healthy males may set a reference to distinguish abnormal and pathological gait patterns. © 2018 Sun et al

    Acupuncture for overweight or obese people (Protocol)

    Get PDF
    Overweight and obesity are defined as abnormal or excessive fat accumulation that presents a risk to health (WHO 2010). The fundamental cause of obesity and overweight is an energy imbalance between calories consumed and calories expended. Global increases in overweight and obesity are attributable to a number of factors including: a global shift in diet towards increased intake of energy-dense foods that are high in fat and sugars and a trend towards decreased physical activity due to the increasingly sedentary nature of many forms of work, changing modes of transportation, and increasing urbanization. The WHO recommends using the body mass index (BMI), which is defined as the weight in kilograms divided by the square of the height in meters (kg/m2), to assess the level of overweight and obesity. At present, the WHO defines overweight as a BMI equal to or more than 25, and obesity as a BMI equal to or more than 30. The range of 18.50 to 24.99 is considered as normal. For Asia-Pacific region, the WHO recommend different ranges (WHO 2000). BMI cut-points provide a benchmark for individual assessment, but must be regarded as a rough guide for adults (WHO 2006). The BMI criteria used for children and teens are different from those used for adults

    q-Deformation of W(2,2) Lie algebra associated with quantum groups

    Full text link
    An explicit realization of the W(2,2) Lie algebra is presented using the famous bosonic and fermionic oscillators in physics, which is then used to construct the q-deformation of this Lie algebra. Furthermore, the quantum group structures on the q-deformation of this Lie algebra are completely determined.Comment: 12 page

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code
    corecore