309 research outputs found

    Progressive internal gravity waves with bounded upper surface climbing a triangular obstacle

    Full text link
    In this paper we discuss a theoretical model for the interfacial profiles of progressive non-linear waves which result from introducing a triangular obstacle, of finite height, attached to the bottom below the flow of a stratified, ideal, two layer fluid, bounded from above by a rigid boundary. The derived equations are solved by using a nonlinear perturbation method. The dependence of the interfacial profile on the triangular obstacle size, as well as its dependence on some flow parameters, such as the ratios of depths and densities of the two fluids, have been studied

    Scarred Patterns in Surface Waves

    Full text link
    Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of quantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves (Faraday waves), which become progressively nonlinear beyond the wave instability threshold, to investigate the subtle interplay between boundaries and nonlinearity. Only a subset (three main types) of the computed linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disordered (but time-independent) patterns are also found even near onset. As the driving acceleration is increased, the time-independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations of lower entropy. We also report complex but highly symmetric (time-independent) patterns far above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added references and text. For high resolution images: http://physics.clarku.edu/~akudrolli/stadium.htm

    Modeling water waves beyond perturbations

    Get PDF
    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed chapter to an upcoming volume to be published by Springer in Lecture Notes in Physics Series. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Changes in Optical Conductivity due to Readjustments in Electronic Density of States

    Full text link
    Within the model of elastic impurity scattering, we study how changes in the energy dependence of the electronic density of states (EDOS) N(ϵ)N(\epsilon) around the Fermi energy ϵF\epsilon_F are reflected in the frequency-dependent optical conductivity σ(ω)\sigma(\omega). While conserving the total number of states in N(ϵ)N(\epsilon) we compute the induced changes in σ(ω)\sigma(\omega) as a function of ω\omega and in the corresponding optical scattering rate 1/τop(ω)1/\tau_{\rm op}(\omega). These quantities mirror some aspects of the EDOS changes but the relationship is not direct. Conservation of optical oscillator strength is found not to hold, and there is no sum rule on the optical scattering rate although one does hold for the quasiparticle scattering. Temperature as well as increases in impurity scattering lead to additional changes in optical properties not seen in the constant EDOS case. These effects have their origin in an averaging of the EDOS around the Fermi energy ϵF\epsilon_F on an energy scale set by the impurity scattering.Comment: 13 pages, 7 figure

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201

    Lowering the CUORE energy threshold

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale double beta decay experiment based on TeO2 cryogenic bolometers and is currently in the last construction stage at the Gran Sasso National Laboratory (LNGS). Its primary goal is to observe neutrino-less double beta decay of 130Te, however thanks to the ultra-low background and large projected exposure it could also be suitable for other rare event searches, as the detection of solar axions, neutrinos from type II supernovae or direct detection of dark matter. The sensitivity for these searches will depend on the performance achieved at the low energy threshold. For this reason a trigger algorithm based on continuous data filtering has been developed which will allow lowering the threshold down to the few keV region. The new trigger has been tested in CUORE-0, a single-tower CUORE prototype consisting of 52 TeO2 bolometers and recently concluded, and here we present the results in terms of trigger efficiency, data selection and low-energy calibration
    corecore