6,502 research outputs found
Electronic properties of bilayer sheets forming moir\'e patterns
In this article, we report the electronic band structures of hexagonal
bilayer systems, specifically, rotated graphene-graphene and boron
nitride-boron nitride bilayers, by introducing an angle between the layers and
forming new periodic structures, known as moir\'e patterns. Using a
semi-empirical tight-binding approach with a parametrized hopping parameter
between the layers, using one orbital per-site approximation, and taking into
account nearest-neighbor interactions only, we found he electronic dispersion
relations to be around K points in a low energy approximation. Our results show
that graphene bilayers exhibit zero band gap for all angles tested in this
work. In boron nitride bilayers, the results reveal a tunable bandgap that
satisfies the prediction of the bandgap found in one-dimensional diatomic
systems presented in the literature.Comment: 5 pages, 2 figures, 2 table
Spinor Fields and Symmetries of the Spacetime
In the background of a stationary black hole, the "conserved current" of a
particular spinor field always approaches the null Killing vector on the
horizon. What's more, when the black hole is asymptotically flat and when the
coordinate system is asymptotically static, then the same current also
approaches the time Killing vector at the spatial infinity. We test these
results against various black hole solutions and no exception is found. The
spinor field only needs to satisfy a very general and simple constraint.Comment: 19 page
An Exploratory Study of Lecturers' Views of Out-of-class Academic Collaboration Among Students
This article reports an exploratory study of lecturers' perceptions of out-of-class academic collaboration (OCAC) among students at a large Singapore university. Two types of OCAC were investigated: collaboration initiated by students, e.g., groups decide on their own to meet to prepare for exams, and collaboration required by teachers, e.g., teachers assign students to do projects in groups. Data were collected via one-on-one interviews with 18 faculty members from four faculties at the university. Findings suggest that OCAC, especially of a teacher-required kind, is fairly common at the university. Faculty members' views on factors affecting the success of OCAC are discussed for the light they might shed on practices to enhance the effectiveness of OCAC
Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems
In this paper, a new nonlinear decentralized disturbance attenuation excitation control for multi-machine power systems is proposed based on recursive design without linearization treatment. The proposed controller improves system robustness to dynamic uncertainties and also attenuates bounded exogenous disturbances on the system in the sense of L 2-gain [1]. Computer test results on a 6-machine system show clearly that the proposed excitation control strategy can enhance transient stability of power systems more effectively than other excitation controllers.published_or_final_versio
Ellipsometry noise spectrum, suspension transfer function measurement and closed-loop control of the suspension system in the Q & A experiment
The Q & A experiment, aiming at the detection of vacuum birefringence
predicted by quantum electrodynamics, consists mainly of a suspended 3.5 m
Fabry-Perot cavity, a rotating permanent dipole magnet and an ellipsometer. The
2.3 T magnet can rotate up to 10 rev/s, introducing an ellipticity signal at
twice the rotation frequency. The X-pendulum gives a good isolation ratio for
seismic noise above its main resonant frequency 0.3 Hz. At present, the
ellipsometry noise decreases with frequency, from 1*10^{-5} rad Hz^{-1/2} at 5
Hz, 2*10^{-6} rad Hz^{-1/2} at 20 Hz to 5*10^{-7} rad Hz^{-1/2} at 40 Hz. The
shape of the noise spectrum indicates possible improvement can be made by
further reducing the movement between the cavity mirrors. From the preliminary
result of yaw motion alignment control, it can be seen that some peaks due to
yaw motion of the cavity mirror was suppressed. In this paper, we first give a
schematic view of the Q & A experiment, and then present the measurement of
transfer function of the compound X-pendulum-double pendulum suspension. A
closed-loop control was carried out to verify the validity of the measured
transfer functions. The ellipsometry noise spectra with and without yaw
alignment control and the newest improvement is presented.Comment: 7 pages, 5 figures, presented in 6th Edoardo Amaldi Conference on
Gravitational Waves, June 2005, Okinawa Japan and submitted to Journal of
Physics: Conference Series. Some modifications are made according to the
referee's comments: mainly to explain the relation between the displacement
of cavity mirror and the ellipticity noise spectru
Large time wellposdness to the 3-D Capillary-Gravity Waves in the long wave regime
In the regime of weakly transverse long waves, given long-wave initial data,
we prove that the nondimensionalized water wave system in an infinite strip
under influence of gravity and surface tension on the upper free interface has
a unique solution on [0,{T}/\eps] for some \eps independent of constant
We shall prove in the subsequent paper \cite{MZZ2} that on the same time
interval, these solutions can be accurately approximated by sums of solutions
of two decoupled Kadomtsev-Petviashvili (KP) equations.Comment: Split the original paper(The long wave approximation to the 3-D
capillary-gravity waves) into two parts, this is the first on
Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10^{-9}) ellipsometer for the Q & A experiment
The Q & A experiment, first proposed and started in 1994, provides a feasible
way of exploring the quantum vacuum through the detection of vacuum
birefringence effect generated by QED loop diagram and the detection of the
polarization rotation effect generated by photon-interacting (pseudo-)scalar
particles. Three main parts of the experiment are: (1) Optics System (including
associated Electronic System) based on a suspended 3.5-m high finesse
Fabry-Perot cavity, (2) Ellipsometer using ultra-high extinction-ratio
polarizer and analyzer, and (3) Magnetic Field Modulation System for generating
the birefringence and the polarization rotation effect. In 2002, the Q & A
experiment achieved the Phase I sensitivity goal. During Phase II, we set (i)
to improve the control system of the cavity mirrors for suppressing the
relative motion noise, (ii) to enhance the birefringence signal by setting-up a
60-cm long 2.3 T transverse permanent magnet rotatable to 10 rev/s, (iii) to
reduce geometrical noise by inserting a polarization-maintaining optical fiber
(PM fiber) as a mode cleaner, and (iv) to use ultra-high extinction-ratio
(10^{-9}) polarizer and analyzer for ellipsometry. Here we report on (iii) &
(iv); specifically, we present the properties of the PM-fiber mode-cleaner, the
transfer function of its suspension system, and the result of our measurement
of high extinction-ratio polarizer and analyzer.Comment: 8 pages, 6 figures, presented in the 6th Edoardo Amaldi Conference on
Gravitational Waves, Okinawa, Japan, June 2005, and accepted by "Journal of
Physics: Conference Series". Modifications from version 2 were made based on
the referees' comments on figures. Ref. [31] were update
Optimal Choices of Reference for a Quasi-local Energy: Spherically Symmetric Spacetimes
For a given timelike displacement vector the covariant Hamiltonian
quasi-local energy expression requires a proper choice of reference spacetime.
We propose a program for determining the reference by embedding a neighborhood
of the two-sphere boundary in the dynamic spacetime into a Minkowski reference,
so that the two sphere is embedded isometrically, and then extremizing the
energy to determine the embedding variables. Applying this idea to
Schwarzschild spacetime, we found that for each given future timelike
displacement vector our program gives a unique energy value. The static
observer measures the maximal energy. Applied to the
Friedmann-Lemaitre-Robertson-Walker spacetime, we find that the maximum energy
value is nonnegative; the associated displacement vector is the unit dual mean
curvature vector, and the expansion of the two-sphere boundary matches that of
its reference image. For these spherically symmetric cases the reference
determined by our program is equivalent to isometrically matching the geometry
at the two-sphere boundary and taking the displacement vector to be orthogonal
to the spacelike constant coordinate time hypersurface, like the timelike
Killing vector of the Minkowski reference.Comment: 12 page
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
Recent years have witnessed much progress in computational modelling for protein subcellular localization. However, the existing sequence-based predictive models demonstrate moderate or unsatisfactory performance, and the gene ontology (GO) based models may take the risk of performance overestimation for novel proteins. Furthermore, many human proteins have multiple subcellular locations, which renders the computational modelling more complicated. Up to the present, there are far few researches specialized for predicting the subcellular localization of human proteins that may reside in multiple cellular compartments. In this paper, we propose a multi-label multi-kernel transfer learning model for human protein subcellular localization (MLMK-TLM). MLMK-TLM proposes a multi-label confusion matrix, formally formulates three multi-labelling performance measures and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which to further extends our published work GO-TLM (gene ontology based transfer learning model for protein subcellular localization) and MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for multiplex human protein subcellular localization. With the advantages of proper homolog knowledge transfer, comprehensive survey of model performance for novel protein and multi-labelling capability, MLMK-TLM will gain more practical applicability. The experiments on human protein benchmark dataset show that MLMK-TLM significantly outperforms the baseline model and demonstrates good multi-labelling ability for novel human proteins. Some findings (predictions) are validated by the latest Swiss-Prot database. The software can be freely downloaded at http://soft.synu.edu.cn/upload/msy.rar
Electrostatically gated membrane permeability in inorganic protocells
Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization
- …