22,775 research outputs found

    The Boden-Hu conjecture holds precisely up to rank eight

    Full text link
    Consider moduli schemes of vector bundles over a smooth projective curve endowed with parabolic structures over a marked point. Boden and Hu observed that a slight variation of the weights leads to a desingularisation of the moduli scheme, and they conjectured that one can always obtain a small resolution this way. The present text proves this conjecture in some cases (including all bundles of rank up to eight) and gives counterexamples in all other cases (in particular in every rank beyond eight). The main tool is a generalisation of Ext-groups involving more than two quasiparabolic bundles.Comment: 17 page

    Decision blocks: A tool for automating decision making in CLIPS

    Get PDF
    The human capability of making complex decision is one of the most fascinating facets of human intelligence, especially if vague, judgemental, default or uncertain knowledge is involved. Unfortunately, most existing rule based forward chaining languages are not very suitable to simulate this aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring decision block to provide better support for the design and implementation of rule based decision support systems. A language called BIRBAL, which is defined on the top of CLIPS, for the specification of decision blocks, is introduced. Empirical experiments involving the comparison of the length of CLIPS program with the corresponding BIRBAL program for three different applications are surveyed. The results of these experiments suggest that for decision making intensive applications, a CLIPS program tends to be about three times longer than the corresponding BIRBAL program

    Optimal Timer Based Selection Schemes

    Full text link
    Timer-based mechanisms are often used to help a given (sink) node select the best helper node among many available nodes. Specifically, a node transmits a packet when its timer expires, and the timer value is a monotone non-increasing function of its local suitability metric. The best node is selected successfully if no other node's timer expires within a 'vulnerability' window after its timer expiry, and so long as the sink can hear the available nodes. In this paper, we show that the optimal metric-to-timer mapping that (i) maximizes the probability of success or (ii) minimizes the average selection time subject to a minimum constraint on the probability of success, maps the metric into a set of discrete timer values. We specify, in closed-form, the optimal scheme as a function of the maximum selection duration, the vulnerability window, and the number of nodes. An asymptotic characterization of the optimal scheme turns out to be elegant and insightful. For any probability distribution function of the metric, the optimal scheme is scalable, distributed, and performs much better than the popular inverse metric timer mapping. It even compares favorably with splitting-based selection, when the latter's feedback overhead is accounted for.Comment: 21 pages, 6 figures, 1 table, submitted to IEEE Transactions on Communications, uses stackrel.st

    Green's Functions and the Adiabatic Hyperspherical Method

    Get PDF
    We address the few-body problem using the adiabatic hyperspherical representation. A general form for the hyperangular Green's function in dd-dimensions is derived. The resulting Lippmann-Schwinger equation is solved for the case of three-particles with s-wave zero-range interactions. Identical particle symmetry is incorporated in a general and intuitive way. Complete semi-analytic expressions for the nonadiabatic channel couplings are derived. Finally, a model to describe the atom-loss due to three-body recombination for a three-component fermi-gas of 6^{6}Li atoms is presented.Comment: 14 pages, 8 figures, 2 table

    Three-Body Recombination in One Dimension

    Get PDF
    We study the three-body problem in one dimension for both zero and finite range interactions using the adiabatic hyperspherical approach. Particular emphasis is placed on the threshold laws for recombination, which are derived for all combinations of the parity and exchange symmetries. For bosons, we provide a numerical demonstration of several universal features that appear in the three-body system, and discuss how certain universal features in three dimensions are different in one dimension. We show that the probability for inelastic processes vanishes as the range of the pair-wise interaction is taken to zero and demonstrate numerically that the recombination threshold law manifests itself for large scattering length.Comment: 15 pages 7 figures Submitted to Physical Review
    corecore