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Green’s functions and the adiabatic hyperspherical method
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We address the few-body problem using the adiabatic hyperspherical representation. A general form for the
hyperangular Green’s function in d dimensions is derived. The resulting Lippmann-Schwinger equation is solved
for the case of three particles with s-wave zero-range interactions. Identical particle symmetry is incorporated
in a general and intuitive way. Complete semianalytic expressions for the nonadiabatic channel couplings are
derived. Finally, a model to describe the atom loss due to three-body recombination for a three-component Fermi
gas of 6Li atoms is presented.

DOI: 10.1103/PhysRevA.82.022706 PACS number(s): 34.50.−s, 31.15.xj, 67.85.Lm

I. INTRODUCTION

In recent years, there has been extensive theoretical and
experimental interest in the area of few-body physics, most
notably in the famous effect first predicted in 1970 by Efimov
[1]. Efimov studied a three-boson system with short-range
two-body interactions in which each two-body system is
infinitesimally close to forming a bound state; that is, the
s-wave scattering length is infinite, or at least very large in
magnitude. Quantitatively, Efimov and later others found that
this effect is described by a simple wave function in the hyper-
spherical representation [2–5]. A quantitative understanding
of three-body scattering [4,6] has given experiments the tools
to examine three-body processes in dilute gas systems and has
led to a wealth of experimental evidence for the Efimov effect
[7–12]. More recently, predictions relating to the four-body
loss rate [13] have given another means of characterizing
an Efimov resonance. The experimental realization of these
predictions swiftly followed [12,14].

The sticking point of the adiabatic hyperspherical method
lies in solving the adiabatic Schrödinger equation. Often
solving this (d − 1)-dimensional equation is as hard as solving
the total d-dimensional Schrödinger equation in the first place.
Having a variety of methods available is therefore helpful. The
benefit of using the adiabatic hyperspherical method comes
from the simple final interpretation that can often be applied
to the resulting coupled set of one-dimensional equations
in the hyperradius [15]. For instance, in the three-body
problem, if two particles can form a bound state, then one
of the resulting scattering channels consists of an atom and
a dimer colliding. In the adiabatic hyperspherical method,
this type of fragmentation channel arises naturally as one of
the discrete solutions to the hyperangular equations. In this
paper, we derive the hyperangular Green’s function for an
arbitrary d-dimensional system, which can then be used in
a hyperangular Lippmann-Schwinger equation to extract the
adiabatic hyperradial potential curves.

This article is arranged as follows. In Sec. II we derive a
general form of the hyperangular Green’s function for a d-
dimensional system. In Sec. III the Green’s function is applied
to the problem of three particles with regularized, zero-range,
s-wave interactions. Section IV applies this result to the three

lowest hyperfine states of 6Li and gives a simple description
of the scaling behavior of three-body recombination events
that result in trap losses. Finally, in Sec. V we summarize the
results and suggest further avenues of inquiry.

II. THE HYPERANGULAR GREEN’S FUNCTION

The adiabatic hyperspherical method has proven useful
for analyzing many few-body systems [16–21]. The heart of
this method lies in treating the overall size of the system,

the hyperradius R defined by
√

µR =
√∑d

i=1 µix2
i , as an

adiabatic parameter. Here µi is the mass scale associated
with the ith Cartesian coordinate and µ is the reduced mass
associated with the hyperradius. For a system of N particles,
xi denote the d = 3N − 3 Cartesian components needed to
specify the relative positions of the N particles. In this
representation, the total wave function is written as

�(R,�) =
∑

n

R−(d−1)/2Fn(R)�n(R; �), (1)

where the adiabatic eigenfunctions �n(R; �) satisfy the fixed-
R Schrödinger equation[

h̄2

2µ

�2

R2
+ V (R,�)

]
�n(R; �) = un(R)�n(R; �), (2)

Here, � is the grand angular momentum operator defined by

�2 = −
∑
i<j

�2
ij , (3)

�ij = xi

∂

∂xj

− xj

∂

∂xi

. (4)

Inserting Eq. (1) into the full (time-independent) Schrödinger
equation takes a d-dimensional partial differential equation to
a set of coupled one-dimensional differential equations:[

− h̄2

2µ

(
d2

dR2
− (d − 3)(d − 1)

4R2

)
+ un(R)

]
Fn(R)

− h̄2

2µ

∑
m

[
2Pnm

d

dR
+ Qnm

]
Fm(R) = EFn(R). (5)
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The nonadiabatic coupling matrices P and Q in Eq. (2) are
defined as

Pmn =
〈
�m(R; �)

∣∣∣∣ ∂

∂R
�n(R; �)

〉
, (6)

Qmn =
〈
�m(R; �)

∣∣∣∣ ∂2

∂R2
�n(R; �)

〉
. (7)

The integrals in Eqs. (6) and (7) are taken only over the d − 1
hyperangles collectively denoted �.

Approximate solutions can be found by solving the uncou-
pled system of equations, which are referred to as the adiabatic
approximation:[

− h̄2

2µ

d2

dR2
+ h̄2

2µ

(d − 3)(d − 1)

4R2

− h̄2

2µ
Qnn + un(R)

]
Fn(R) = EFn(R) (8)

The ground-state eigenenergy Eq. (8) is a variational up-
per bound to the exact ground-state energy from Eq. (5).
Another variant of this method is frequently denoted the
Born-Oppenheimer approximation, with the diagonal correc-
tion − h̄2

2µ
Qnn(R) to the potential un(R) omitted. These two

approximations will be the main focus of this paper, while
the nonadiabatic couplings Pnm(R) will be used to describe
Landau-Zener-Stueckelberg transitions between the different
hyperradial channels un(R). Once the adiabatic potentials
have been found, much of the intuition of simple one-
dimensional Schrödinger quantum mechanics can be brought
to bear upon the problem. Unfortunately, obtaining these
potentials can be prohibitively difficult in many problems;
the development of efficient ways to calculate them is
desirable.

This section derives the free space hyperangular Green’s
function for an arbitrary d-dimensional space such as an
N -body system with d = 3(N − 1) with the center-of-mass
coordinate removed. This Green’s function can then be used
to recast Eq. (2) into an integral Lippmann-Schwinger (LS)
equation. The d-dimensional Laplacian written in hyperspher-
ical coordinates is given in Ref. [18] as

∇2 = 1

R(d−1)/2

∂2

∂R2
R(d−1)/2 − (d − 1)(d − 3)

4R2
− �2

R2
. (9)

The hyperangular Green’s function is given as the solution to

[�2 − ν(ν + d − 2)]Gν(�,�′) = δd (� − �′). (10)

Here � stands for the d − 1 hyperangular coordinates needed
to describe the surface of a d-dimensional hypersphere,
and δd (� − �′) is the Dirac δ function in the hyperangular
coordinates, i.e., δ(� − �′) = 0 if � �= �′ and

∫
δd (� − �′)

d� = 1. The Green’s function can be found in several forms,
including the full hyperspherical harmonic expansion [22], and
has been given in closed form by Szmytkowski [23].

The simplest derivation of the Green’s function relies on
the completeness of hyperspherical harmonics:∑

λµ

Y ∗
λµ(�′)Yλµ(�) = δd (� − �′). (11)

The function Yλµ is the solution to the eigenvalue equation

�2Yλµ(�) = λ(λ + d − 2)Yλµ(�). (12)

Here λ is the hyperangular momentum quantum number,
and µ enumerates the degenerate states. These functions are
generally expressed as products of Jacobi polynomials for
any number of dimensions and are thoroughly described by
a number of authors (see Refs. [18,24] for some examples).
They are simply an extension of normal spherical harmonics
to a higher dimension.

Equation (11) can be used in conjunction with Eq. (12) to
find Gν(�,�′) [22]:

Gν(�,�′) =
∑
λµ

Y ∗
λµ(�′)Yλµ(�)

λ(λ + d − 2) − ν(ν + d − 2)
. (13)

Unfortunately, eigenfunction expansions of Green’s function
often have slow convergence with respect to the number
of eigenfunctions, making them unsuitable for numerical
calculations. The closed form of the Green’s function from
Ref. [23] is given as

Gν(�,�′) = −π

(d − 2)Sd sin πν
C(d−2)/2

ν (−R̂ · R̂′), (14)

where Cα
ν is a Gegenbauer function, Sd is the surface

area of the d-dimensional unit hypersphere Sd = ∫
d� =

2πd/2/�(d/2), and R̂ · R̂′ is the cosine of the angle between
the two normalized hypervectors R̂ and R̂′. Here ν is defined
by Eq. (10). While Eq. (14) has a pleasing, compact form, it is
often divergent at critical points. For instance if ν is noninteger
valued, then Gν(�,�′) diverges as R̂ · R̂′ → 1.

For these reasons, it is convenient to find a third form
of the Green’s function. The first step in this derivation
relies on the division of the total d-dimensional space into
two subspaces. For the purposes of this work, we will
assume that the dimension of the two subspaces are both
greater than 2, i.e., d1,d2 � 2. The two subspaces are each
described by subhyperspherical coordinates. The two resulting
subhyperradii can then be related to the total hyperradius as

R1 = R sin α,

R2 = R cos α, (15)

0 � α � π/2.

Reference [24] details how the hyperangular momentum can
be written in terms of the subhyperangular momenta as in
Eq. (17). With the following definitions:

�2
1Yλ1µ1 (�1) = λ1(λ1 + d1 − 2)Yλ1µ1 (�1),

(16)
�2

2Yλ2µ2 (�2) = λ2(λ2 + d2 − 2)Yλ2µ2 (�2),

the Green’s function can be expanded using the completeness
of the subhyperspherical harmonics [viz., Eq. (18)]. Substitut-
ing the expansion in Eq. (18) into Eq. (10), we find that the
latter is satisfied if and only if Eq. (19) is satisfied; δ(α − α′)
is a Dirac δ function and the denominator on the left-hand
side of Eq. (19) arises from the hyperangular volume element

022706-2



GREEN’S FUNCTIONS AND THE ADIABATIC . . . PHYSICAL REVIEW A 82, 022706 (2010)

associated with the angle α (see Refs. [18,23] for details).

�2 = −1

(sin α)(d1−1)/2(cos α)(d2−1)/2

× ∂2

∂α2
(sin α)(d1−1)/2(cos α)(d2−1)/2

+ �2
1 +(d1 −1)(d1 − 3)/4

sin2 α
+ �2

2 + (d2 − 1)(d2 − 3)/4

cos2 α

− (d − 1)(d − 3) + 1

4
. (17)

G(�,�′) =
∑
λ1µ1

∑
λ2µ2

g(α,α′)Y ∗
λ1µ1

(�′
1)Yλ1µ1 (�1)

×Y ∗
λ2µ2

(�′
2)Yλ2µ2 (�2), (18)

δ(α − α′)
(sin α)d1−1(cos α)d2−1

=
[ −1

(sin α)d1−1(cos α)d2−1

∂

∂α
(sin α)d1−1(cos α)d2−1 ∂

∂α

+ λ1(λ1 + d1 − 2)

sin2 α
+ λ2(λ2 + d2 − 2)

cos2 α

− ν(ν + d − 2)

]
g

d1,d2
λ1,λ2

(ν; α,α′). (19)

The general one-dimensional Green’s function for any differ-
ential equation of the Sturm-Liouville form Eq. (19) is

g
d1,d2
λ1,λ2

(ν; α,α′) = −f +
λ1λ2ν

(α<) f −
λ1λ2ν

(α>)

(sin α)d1−1 (cos α)d2−1 W [f +,f −]
, (20)

where W [f +,f −] = f +f −′ − f −f +′ is the Wronskian [25]
and α<(>) = min(α,α′) [max(α,α′)]. The functions f +(α) and
f −(α) are regular at α = 0 and α = π/2, respectively, and
satisfy the homogeneous version of Eq. (19). The solutions
f +(α) and f −(α) are given in Ref. [26] as

f
(±)
λ1λ2ν

(α) = (sinλ1 α cosλ2 α)

× 2F1
(

λ1+λ2−ν
2 , ν+λ1+λ2+d−2

2 ; 2λ±+d±
2 ; 1∓cos 2α

2

)
,

(21)

W
[
f +

λ1λ2ν
,f −

λ1λ2ν

]
= −2�

( 2λ1+d1
2

)
�

( 2λ2+d2
2

)
(sin α)d1−1 (cos α)d2−1 �

(
ν+λ1+λ2+d−2

2

)
�

(
λ1+λ2−ν

2

) ,

(22)

where 2F1 (a,b; c,x) is a hypergeometric function, λ+ = λ1,
d+ = d1, λ− = λ2, and d− = d2.

III. THE THREE-BODY PROBLEM WITH
ZERO-RANGE INTERACTIONS

In this section we show the utility of the Green’s function
developed in the previous section by applying it to the three-
body problem with regularized, zero-range, s-wave, pseudopo-
tential interactions. This problem has been well studied by a

variety of researchers [4,27–29]. The full Hamiltonian for the
untrapped system is given by

Htot =
3∑

i=1

− h̄2

2mi

∇2
i +

∑
i>j

Vij (rij ), (23)

where �ri is the position of the ith particle, and ∇2
i is the

Laplacian for �ri . The interaction is given by

Vij (rij ) = 4πh̄2aij

2µij

δ(3)(�rij )
∂

∂rij

rij , (24)

where aij is the s-wave scattering length between particles
i and j , and µij is the two-body reduced mass, µij =
mimj/(mi + mj ). The pseudopotential defined in this way
applies the Bethe-Peierls boundary condition to the two-body
wave function as r → 0, i.e., ψ(r) → (1 − aij /r) C for some
constant C [30]. The center of mass can be removed from
this system by converting to a system of Jacobi vectors.
Jacobi vectors are created for this system by considering the
separation vector between two of the three particles and then a
second vector from the center of mass of that two-body system
to the third. The final vector is then just the center-of-mass
coordinate. The choice of Jacobi vectors is not unique. Here
we will need to consider three different Jacobi coordinate
parametrizations, each of which is convenient for describing
one of the three possible two-body interactions V (rij ). In the
“odd-man-out” notation these are given by

�ρ(k)
1 = (�ri − �rj )/dk,

�ρ(k)
2 = dk

(
mi�ri + mj �rj

mi + mj

− �rk

)
,

(25)

�rc.m. = (m1�r1 + m2�r2 + m3�r3)

m1 + m2 + m3
,

d2
k = (mk/µ)(mi + mj )

m1 + m2 + m3
,

where µ is the three-body reduced mass

µ =
√

m1m2m3

m1 + m2 + m3
. (26)

The total Hamiltonian can be rewritten in terms of the Jacobi
coordinates and the center of mass as

Htot = H + Hc.m.,

Hc.m. = −h̄2

2M
∇2

c.m., (27)

H = − h̄2

2µ

2∑
i=1

∇2
ρi

+
∑
i>j

Vij (rij ).

Transforming the Jacobi coordinate piece of the Hamiltonian
in Eq. (27) into hyperspherical coordinates using Eqs. (9) and
(25) yields

H = − h̄2

2µ

1

R5/2

∂2

∂R2
R5/2 + 15h̄2

8µR2
+ h̄2�2

2µR2

+
∑
i<j

Vij

(
dkρ

(k)
1

)
. (28)
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To apply the adiabatic hyperspherical formulation, the hyper-
angular adiabatic Schrödinger equation must be solved:[

�2 + 2µR2

h̄2

∑
i<j

Vij

(
dkρ

(k)
1

) − ν (ν + 4)

]
� (R; �) = 0.

(29)

This can now be accomplished with the use of the hyperangular
Green’s function, Eq. (18), in the Lippmann-Schwinger (LS)
equation,

�(R; �) = −2µR2

h̄2

∫
d�′Gν(�,�′)

×
[ ∑

i<j

Vij

(
dkρ

(k)′
1

)]
�(R; �′), (30)

where �ρ(k)′
1 is the kth Jacobi vector parametrized by {R,�′}.

Because the system has been constrained to have a constant
hyperradius, this is effectively a bound-state problem; note
that Eq. (30) has been assumed here to have no noninteracting
solution at the chosen value of ν. The hyperradial Hamiltonian
from Eq. (5) in the absence of the nonadiabatic couplings P

and Q is given in terms of the hyperangular eigenvalue ν as

HR = −h̄2

2µ

∂2

∂R2
+ Un(R),

(31)

Un(R) = h̄2

2µ

[
(νn + 2)2 − 1/4

R2
− Qnn(R)

]
.

To evaluate the integrals in the LS equation, the Green’s
function from Eq. (18) is expressed in terms of the appropriate
Jacobi coordinate set for each interaction term in the sum, with
the hyperangles defined as

�(k) = {
ω

(k)
1 ,ω

(k)
2 ,α(k)

}
, (32)

where ω
(k)
i represents the spherical polar angular coordinates

for �ρ(k)
i . The remaining hyperangle α(k) is defined as in

Eq. (15), i.e.,

ρ
(k)
1 = R sin α(k),

(33)
ρ

(k)
2 = R cos α(k).

With this choice of hyperangles, it is clear that d1 = d2 = 3
and the hyperspherical sub-harmonics Y

(i)
λiµi

(�i) in Eq. (18)
reduce to normal spherical harmonics yLiMi

(ωi).
The δ function implies that the Bethe-Peierls two-body

boundary condition for each two-body interaction can be ap-
plied and the third particle can be considered to be far away, i.e.,

lim
ρ

(k)
1 →0

�(R; �) =
(

1 − a(k)

dkρ
(k)
1

)
yLM

(
ω

(k)
2

)
C

(k)
LM. (34)

Here yLM is a spherical harmonic describing the free space
behavior in ω

(k)
2 and it carries the total angular momentum of

the system. The superscript k again indicates the odd-man-out
notation. This gives the values of the subhyperangular
momentum quantum numbers in the k Jacobi coordinate
system as λ1 = 0 and λ2 = L, which accounts for the s-wave
interaction and the total angular momentum L. Inserting

Eq. (34) into Eq. (30) gives the hyperangular eigenfunction

� (R; �) = 2µ

R

∑
k

a(k)

2µkd
3
k

NLνC
(k)
LMyLM

(
ω

(k)
2

)
f −

0Lν(α(k)),

(35)

NLν = −�
(

L−ν
2

)
�

(
L+ν+4

2

)
√

π�
(
L + 3

2

) ,

where µk is the two-body reduced mass labeled in the
odd-man-out notation and the orthonormality of spherical
harmonics has been used to evaluate the ω

(k)′
1 and ω

(k)′
2

integrals. The δ function in Eq. (24) implies that the integral
in α(k)′ can be accomplished by evaluating at α(k)

< = α(k)′ = 0.

The analytic equation for the hyperangular eigenfunction in
Eq. (35) is not very useful without knowing the hyperangular
eigenvalue ν(R). To obtain an equation for ν, the boundary
condition given in Eq. (34) must be applied again, i.e.,

yLM

(
ω

(k′)
2

)
C

(k′)
LM = lim

α(k′ )→0

∂

∂α(k′) α
(k′)�(R; �(k′))

= 2µ

R

∑
k

a(k)

2µkd
3
k

NLνC
(k)
LM lim

α(k′ )→0

∂

∂α(k′) α
(k′)

× [
f −

0Lν(α(k))yLM

(
ω

(k)
2

)]
, (36)

To evaluate the limit on the right-hand side of this, we must
determine the values of the k �= k′ Jacobi coordinates in the
limit ρ

(k′)
1 → 0. Equations (25) and (33) give, for k �= k′,

lim
α(k′ )→0

α(k) = βkk′ = arctan

[
(m1 + m2 + m3) µ

mkmk′

]
, (37)

lim
α(k′ )→0

�ρ(k)
2 ∝ −�ρ(k′)

2 . (38)

Note that if f − is regular at βkk′ , then

lim
α(k′ )→0

∂

∂α(k′) α
(k′)f −

0Lν(α(k)) → f −
0Lν(βkk′). (39)

Using this and evaluating the limits in Eq. (36) yields a matrix
equation for C

(k)
LM :

C
(k′)
LM =

∑
k

MLν
k′kC

(k)
LM,

(40)

MLν
k′k =

⎧⎪⎪⎨
⎪⎪⎩

2µ

R

2�

(
L−ν

2

)
�

(
ν+L+4

2

)
�

(
L−ν−1

2

)
�

(
L+ν+3

2

) a(k′ )
2µkd

3
k

for k = k′,

(−1)L 2µ

R
NLν

a(k)

2µkd
3
k

f −
0Lν (βkk′) for k �= k′.

The hyperangular eigenvalue ν is found by solving the closed-
form transcendental equation

det(M − 1) = 0 (41)

for any given total angular momentum L, any set of s-wave
scattering lengths a(k), and arbitrary masses.

A. Imposing symmetry

The hyperangular eigenvalues for the general three-body
problem with arbitrary exchange symmetry can be found by
solving the transcendental equation (41), but the system can
be simplified by considering different permutation symmetries
and imposing those symmetries on the boundary conditions

022706-4
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TABLE I. Possible permutation symmetries that may be imposed
on the three-body system with s-wave interactions are given with
the appropriate boundary conditions. B stands for a boson, F for a
fermion, and X for a distinguishable particle with an arbitrary mass.

X1X2X3 C(1) C(2) C(3)

BBB C C C

BBX C1 C1 C2

FFX C −C 0

C
(k)
LM . For example, if the particles in question are identical

bosons, permutation cannot have any effect on the wave
function. Thus, if two particles are exchanged in the two-body
subsystem, the boundary condition must remain the same,
i.e., C

(1)
LM = C

(2)
LM = C

(3)
LM = CLM and a(1) = a(2) = a(3) = a.

A complete list of the possible exchange symmetries is given
in Table I.

To illustrate this postsymmetrization, we apply the identical
boson symmetry with L = 0 to Eq. (40), resulting in the well-
known transcendental equation for ν [4,27–29,31],

R

a
=

−31/4
[

8√
3

sin
(

π(ν+2)
6

) − (ν + 2) cos
(

π(ν+2)
2

)]
√

2 sin
(

π(ν+2)
2

) . (42)

In the limit where R/a → 0 the first solution to this
transcendental equation gives (ν + 2) → is0 = 1.00624i, to
six decimal places. Inserting this into Eq. (31) produces a
supercritical attractive 1/R2 effective potential,

U (R) = h̄2

2µ

−s2
0 − 1/4

R2
,

(43)
s0 = 1.00624.

This attractive potential is the source of the famous Efimov
effect, where an effective attractive dipole-type potential sup-
ports an infinite set of three-body bound states that accumulate
at the noninteracting three-body threshold, E = 0.

B. Nonadiabatic couplings

As in any adiabatic treatment, the effective hyperradial
potentials are coupled by nonadiabatic terms that arise from the
hyperradial dependence of the hyperangular channel functions.
These couplings come in the form of the P and Q matrices
in Eq. (5). To find the nonadiabatic coupling matrices, we
apply the methods of Ref. [32]. The details of the derivation
are shown in the Appendix, the result of which gives the
semianalytic expressions for the matrix elements Pmn:

Pmn =
∑

k C(k)
m C(k)

n
a(k)

dkR2

(εm − εn)
for n �= m, (44)

−ε′
n =

∑
k

(
C(k)

n

)2 a(k)

dkR2
. (45)

Here, for notational simplicity, we have set εn = (νn + 2)2

and all primes indicate a derivative with respect to R (e.g.,
ε′
n = dεn/dR). Because the hyperangular eigenfunctions are

orthonormal, the diagonal part of the P matrix is zero, i.e.,
Pnn = 1

2
∂

∂R
〈�n|�n〉 = 0. Equation (45) gives the normaliza-

tion condition for �n, with an overall phase that is free. This
overall phase is chosen here so that

∑
k C(k)

n is positive. A
similar derivation provides the matrix elements Qmn:

Qmn = δmn

(
ε′
n + Rε′′

n + An

R2ε′
n

+ ε′′′
n

6ε′
n

)

+ 2(1 − δmn)
ε′
nPmn + Bmn

(εm − εn)
, (46)

An =
∑

k

a(k)

dk

[(
C(k)

n

)′]2
,

Bmn =
∑

k

[
C(k)

m

(
a(k)

dkR2

) (
C(k)

n

)′ − C(k)
m C(k)

n

a(k)

dkR3

]
.

When the symmetries given in Table I are used, there can be
a considerable simplification of the expressions for Pmn and
Qmn. For a system of identical bosons where a(1) = a(2) =
a(3) = a, d1 = d2 = d3 = d, and C(1)

n = C(2)
n = C(3)

n = Cn,
Pmn and Qmn are given by

Pmn =
√

ε′
mε′

n

(εm − εn)
,

Qmn = δmn

[
−1

4

(
ε′′
n

ε′
n

)2

+ 1

6

ε′′′
n

ε′
n

]
(47)

+ (1 − δmn)

[
2ε′

n

√
ε′
nε

′
m

(εm − εn)2 − ε′′
n

(εm − εn)

√
ε′
m

ε′
n

]
,

which are in agreement with previously calculated nonadia-
batic corrections for the three identical boson system [27].

IV. THREE DISTINGUISHABLE
INTERACTING PARTICLES

In this section the adiabatic three-body potentials and
the nonadiabatic couplings are applied to the case of three
distinguishable equal-mass particles. This system has been
realized, for instance, in ultracold three-component Fermi
gases of 6Li atoms [9,10] which has sparked a great deal of
recent theoretical interest [33–36]. The scaling behaviors and
recombination rates we discuss in this section can be found in
Ref. [35]. We derive them here to illustrate the power of the
methods presented in this paper. The scattering lengths near
the resonance positions used here, as functions of magnetic
field, are given in Refs. [9,10,37] by

a(k) = ab

[
1 − �

B − B0

]
[1 + α (B − B0)] ;

for k = 1:

ab = −1450a0, B0 = 834.15 G,

� = 300 G, and α = 4 × 10−4 G−1;

for k = 2:

ab = −1727a0, B0 = 690.4 G

� = 122.2 G, and α = 2 × 10−4 G−1;

for k = 3:

ab = −1490a0, B0 = 811.22 G,
(48)

� = 222.3 G, and α = 3.95 × 10−4 G−1;
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FIG. 1. (Color online) All possible s-wave scattering lengths are
shown for the lowest three Zeeman states of Li6 from Ref. [37]. Each
marked region gives a different set of length scale discrepancies. Here
a(k) is the scattering length between two atoms in states |i〉 and |j〉
with k as the component not involved in the interaction.

where a0 is the Bohr radius. The Fano-Feshbach reso-
nances in this system allow for a large variety of tunable
interactions.

This series of overlapping resonances produces five differ-
ent regions of magnetic field, shown in Fig. 1, near the three
resonance positions, each possessing a distinct behavior. In
all five regions, the scattering lengths are much larger than
the effective range, allowing for the use of the zero-range
interaction assumptions. Table II shows the various length
scale disparities in these regions.

Figure 2(a) shows an example of the lowest four hyperan-
gular eigenvalues (ν + 2)2 obtained from solving Eq. (40) for
a(1) = a(3) and a(2) = 1000a(1). This is provided as an example
that is qualitatively similar to the behavior of the system in
region I. When the hyperradius is in a region where all other
length scales are much different, the hyperangular eigenvalue
(ν + 2)2 becomes constant, or, in the case of two-body bound
states, becomes proportional to R2. This behavior can be
interpreted as giving a universal set of potential curves from
Eq. (31). For example, in region I, where r0 � a(3) � a(1) �
a(2), there are three hyperradial regions: r0 � R � a(3) �
a(1) � a(2); r0 � a(3) � a(1) � R � a(2); and r0 � a(3) �
a(1) � a(2) � R. In each region the hyperangular eigenvalues
take on the universal value that is expected for resonant
interactions [2,27,28].

TABLE II. Possible tunable interaction regimes near the reso-
nances of 6Li.

Region

I r0 � a(3) � a(1) � a(2) a(1), a(2), a(3) > 0
II r0 � a(3) ∼ a(1) � |a(2)| a(2) < 0; a(1), a(3) > 0
III r0 � |a(2)| � a(1), a(3) a(2) < 0; a(1), a(3) > 0
IV r0 � |a(2)| � |a(1)|, a(3) a(2), a(1) < 0; a(3) > 0
V r0 � |a(2)| � |a(1)| � |a(3)| a(1), a(2), a(3) < 0
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FIG. 2. (Color online) (a) For an example system having a(1) =
a(3) and a(2) = 1000a(1), the first four hyperangular eigenvalues are
shown as functions of the hyperradius. The solid black horizontal lines
show the expected behavior for three identical resonantly interacting
bosons. The dashed line gives the behavior of two identical fermions
interacting resonantly with a third distinguishable particle. Dotted
lines give the expected universal behavior for a single resonant
scattering length. Finally, the dot-dashed line is the lowest expected
free space eigenvalue for three distinguishable free particles. (b) The
coupling strengths between the third and fourth (purple solid curve),
the first and fourth (red dashed curve), and the first and third (black
dotted curve) adiabatic potentials are shown as a function of R.

Figure 3 schematically shows the behavior of the first few
hyperradial effective potentials from Eq. (31). The grey areas
are the regions where potentials are transitioning from one
universal behavior to the next. The zero-range pseudopotential
cannot describe the short-range details of the interaction,
meaning that the potentials found here are only valid for R �
r0, where r0 is a short-range parameter shown schematically
as the labeled blue region on the left of Fig. 3.

Figure 2(b) shows the coupling strength, P 2
mn/

2µ[um(R) − un(R)], between the different potentials. The

r0 a(1), a(3)
a(2)

R

U
(R

)

FIG. 3. (Color online) A schematic picture of the first four
hyperradial potentials in region I. The grey areas, labeled by the
appropriate scattering lengths, indicate regions where the potentials
are changing from one universal behavior to another. The blue region
on the left, labeled by r0, indicates the short-range region where the
zero-range pseudopotential can no longer be applied.
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FIG. 4. (Color online) (a)–(e) Examples of the hyperangular eigenvalues from each region of magnetic field as a function of the hyperradius
in atomic units. (f) The three s-wave scattering lengths shown as a reference vs the magnetic field strength. The vertical dotted lines, from right
to left, show the magnetic fields at which the hyperangular eigenvalues in (a)–(e) were found, B = 675,695,805,820, and 845 G, respectively.

places where this coupling peaks are the points where a
transition between curves is the most probable. Figures 4(a)–
4(e) are examples of the hyperangular eigenvalues found
in each region. The magnetic field at which each set of
eigenvalues are found is shown as dotted lines in Fig. 4(d)
from left to right for Figs. 4(a)–4(e), respectively. In each
figure the hyperangular eigenvalue can be seen flattening out to
a universal constant in each region of length scale discrepancy.
As the magnetic field is scanned through each resonance, one
two-body bound state becomes a virtual state. This behavior
can be seen in the hyperangular eigenvalues that diverge toward
−∞. As each resonance is crossed, one of the hyperangular
eigenvalue curves goes from diverging to −∞ to converging
to (ν + 2)2 → 4.

As a final examination of this system, we extract the scaling
of the low-energy three-body recombination rate, i.e., the rate
at which three particles collide and form a dimer and a free
particle. The lowest three-body curve, the lowest potential that
goes to the three-free-particle threshold, is the potential that
dominates this process. Contributions from higher hyperradial
potentials will be suppressed due to larger tunneling barriers.
One limitation of the zero-range pseudopotential is that it
only admits at most one dimer of each type. The process of
three-body recombination releases the binding energy of the
dimer state as kinetic energy between the dimer and remaining
particle.

The event rate coefficient for N initially unbound par-
ticles with total orbital angular momentum L to make a
transition from a hyperspherical potential curve with hyper-
angular eigenvalue λ to a lower lying final state is given

by [4,38]

KN = h̄k

µ
NS

(
2π

k

)d−1 �
(

d
2

)
2πd/2

∑
i,f

(2L + 1)|Tf i |2, (49)

where d is the total dimension of the system (in the case
of three-body recombination d = 6), Tf i ≡ Sf i − δf i is the
transition matrix element between an initial three-body en-
trance channel i and a final exit channel f , and k = √

2µE/h̄

is the wave number of the asymptotic hyperradial wave
function. The sum in this equation runs over all the initial,
asymptotic channels with total angular momentum L that
contribute to the scattering process. In Eq. (49), NS is the
number of permutational symmetries in the system. For three
distinguishable particles NS = 1, but it can be different; for
instance, for N identical bosons, NS = N !. For the purposes of
this study we will concentrate on the three-body recombination
processes that result in trap loss processes, where the energy
released in the recombination can be assumed sufficient to
eject the remaining fragments from a trap. In this section we
assume that the confined gas is at low enough densities and
temperatures to remain in the threshold regime, i.e., 1/k � |al|
where al is the largest of the three scattering lengths from
Fig. 1 at any given magnetic field. With this assumption the
presence of an external trapping potential plays no significant
role in the scaling behavior of three-body recombination.

In the low-energy regime, only the lowest L = 0 initial
three-body channel will contribute, while higher channels will
be suppressed. The sum over final T matrix elements can be
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approximated using the Wentzel-Kramers-Brillouin (WKB)
phase in the entrance channel [28,38]:

∑
f

|Tf i |2 ≈ e−2γ

2

sinh 2η

cos2 φ + sinh2 η
, (50)

where η is an imaginary phase which parametrizes the losses
from the incoming channel. In Eq. (50), γ is the total WKB
tunneling integral between the outer classical turning point and
the hyperradial position at which the transition to the outgoing
state occurs, i.e.,

γ = Re

[∫ RT

R0

√
2µ

h̄2 [U (R) − E] + 1

4R2
dR

]
, (51)

where E is the initial three-body energy, RT is the outer
classical turning point, and R0 is the position at which the
coupling between the incoming and outgoing channels peaks.
In Eq. (50), φ is the WKB phase accumulated in any inner
attractive well:

φ = Im

[∫ RT

R0

√
2µ

h̄2 [U (R) − E] + 1

4R2
dR

]
. (52)

The extra repulsive 1/4R2 term in Eqs. (51) and (52) is due
to the Langer correction [39]. The total T -matrix element
will depend on the detailed nature of the real short-range
interactions and the behavior of the outgoing channels, but the
scaling behavior with the scattering lengths will be determined
by Eq. (50). In each region of magnetic field, there are different
length scale discrepancies and different numbers of bound
states. As a result, we will examine each region separately.

1. Region I (a(1) ∼ a(3) � a(2))

Figure 4(a) shows the behavior of the first few hyperangular
eigenvalues in region I. The first three eigenvalues correspond
to dimer states, while the fourth corresponds to the lowest
three-body potential and is the entrance channel that will
control three-body recombination. The lower two dimer states
are relatively deeply bound with binding energies, h̄2/ma2,
on the order of 10−12 Hartree. This is comparable to the
trap depth energy of a normal magneto-optical trap for
experiments with 6Li [9,10], meaning that recombination into
these dimer channels typically releases enough energy to eject
the remaining dimer-atom system from the trap.

In the limit where R � a(3), the three atoms are far enough
apart to be in the noninteracting regime. This means that
the hyperangular eigenfunction limits to the lowest allowed
three-body hyperspherical harmonic with its corresponding
eigenvalue, (ν + 2)2 → 4. In this limit the hyperradial poten-
tial becomes

U (R � a(3)) = h̄2

2µ

4 − 1/4

R2
. (53)

For very low energy scattering, the classical turning point in
Eq. (50) is approximately

RT = 1

2k
. (54)

In fact, this will be the turning point for all of the three-body
recombination processes discussed in this section.

r0 a(1), a(3)
a(2)

R

U
(R

)

FIG. 5. (Color online) A schematic of the path for three-body
recombination in region I. Transition regions are labeled by the
appropriate length scale, and the short-range nonuniversal region is
labeled by r0.

It is possible for recombination to occur directly between
the lowest three-body curve and the deep dimer channels,
but this direct process is strongly suppressed due to the large
tunneling barrier in the three-body potential at small R. The
favored path is through a transition to the weakly bound
dimer channel, shown schematically in Fig. 5. The coupling
between the lowest three-body channel and the weakly bound
dimer channel peaks at approximately R ∼ a(2), while the
coupling peak between the weakly bound dimer channel and
the remaining two dimer channels occurs at approximately
R ∼ a(3) ∼ a(1). In the regime where a(1) ∼ a(3) � R � a(2)

the three particles are so far apart that they cannot see the
smaller scattering lengths a(1) and a(3), but the third scattering
length is so large compared to the hyperradius that it might
as well be infinite. This leads to a universal potential whose
hyperangular eigenvalue can be found by solving Eq. (40) with
a(1) = a(3) = 0 and a(2) → ∞, i.e.,

U (R) = h̄2

2µ

p2
1 − 1/4

R2
,

(55)
p1 = (ν + 2) = 1.

This intermediate universal behavior can clearly be seen in
Fig. 2(a).

The behavior of each channel can be approximated by
the universal behavior of the hyperradial potential in each
region. Under this assumption, using Eq. (50), the tunneling
probability is given by

e−2γ ∝ exp

[
− 2

∫ a(2)

a(3)
dR

√
p2

1

R2
− 2µ

h̄2 E

− 2
∫ RT

a(2)
dR

√
4

R2
− 2µ

h̄2 E

]
. (56)

If the scattering energy is very small, E � h̄2/m[a(2)]2, then
the energy dependence in these integrands becomes negligible
leaving,

e−2γ ∝ k4(a(2)a(3))2. (57)
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Inserting this in for the T -matrix element in Eq. (49) gives the
scaling behavior of the recombination rate with the scattering
lengths [28]:

K3 ∝ (a(2)a(3))2. (58)

It was assumed here the final transition occurs at R ∼ a(3)

leading to the scaling behavior with a(3), but the transition
could just as easily have occurred at R ∼ a(1). a(1) and a(3)

are approximately equal here, and which one dominates the
transition depends on the short-range behavior of the real two-
body interaction. To extract the scaling behavior with respect
to a(1), one can simply replace a(3) with a(1) in Eq. (58) as long
as a(1) and a(3) are approximately equal.

2. Region II (a(1) ∼ a(3) � |a(2)|)
The recombination in region II is simpler than in region I, as

there is no weakly bound intermediate state. Again, we assume
that the trap loss recombination is dominated by transitions
to the two remaining dimer states seen in Fig. 4(b). The
lowest three-body potential has a coupling to these channels
that peaks at R ∼ a(1) and R ∼ a(3). For R � |a(2)| the
hyperangular eigenvalue takes on the noninteracting value
(ν + 2) → 2. For a(1),a(3) � R � |a(2)| the universal hyper-
angular eigenvalue (ν + 2) = p1 = 1 is seen again [27–29].
Ignoring the transitional region between these two regimes,
the transition probability is given by

e−2γ ∝ exp

[
− 2

( ∫ |a(2)|

a(3)
dR

√
p2

1

R2
+

∫ RT

|a(2)|
dR

√
4

R2

)]
.

(59)

Inserting this into Eq. (49) gives a recombination rate that has
the same scaling behavior as in region I [28]:

K3 ∝ (a(2)a(3))2. (60)

Again it is assumed that the final transition occurs at R ∼ a(3),
but it could occur at a(1) as well. As in region I, the scaling
behavior with respect to a(1) can be found by simply replacing
a(3) with a(1) in Eq. (58) as long as a(1) and a(3) are close.

3. Region III (|a(2)| � a(1) ∼ a(3)) and region IV
(|a(2)| � |a(1)| ∼ a(3))

In region III, none of the dimers predicted by the zero-range
model have enough binding energy to cause trap loss. While
recombination can occur into these channels, we will focus on
the process of recombination to deeply bound states here. In
reality, the deep interaction potential between two Li atoms in
different spin states admits many deeply bound dimer states,
and a true hyperspherical description of the system would have
channels going to each possible dimer-atom threshold. The
energy released in recombining into these deep states is enough
to kick the atoms out of any normal trap. Because the deeply
bound states are of the size of the range of the interaction,
coupling to the deeply bound hyperradial channels will peak
at small hyperradius, R ∼ r0, and the rate can be found by
studying the tunneling probability of reaching these states.

As with the recombination process in region I, the most
favorable pathway involves multiple steps. Starting from the
lowest three-body channel, a transition is made to either the

r0

R

U
(R

)

a(2)
a(1), a(3)

FIG. 6. (Color online) A schematic of the potentials and the path
for three-body recombination in region III. Again the labeled grey
regions indicate a transition from one universal potential behavior to
another. The lowest (green) line represents the hyperradial potential
for a deeply bound dimer state. The blue area on the left labeled by
r0 is the short-range region not described by zero-range interactions.

first or second weakly bound dimer channel. Because a(1) and
a(3) are similar in magnitude, the coupling to these channels
peaks in the same region. If the transition is made to the highest
dimer channel, then another transition is made directly to the
second.

This pathway is shown schematically in Fig. 6. An inter-
esting thing occurs in the lowest weakly bound potential when
|a(2)| � R � a(1) ∼ a(3): the universal potential becomes
attractive. This region of attractive potential gives rise to a
number of phenomena. For instance, in the limit a(1),a(3) →
∞, the universal attractive potential supports an infinite
number of geometrically spaced three-body bound states,
giving rise to the Efimov effect. In the process of three-body
recombination to deeply bound dimer states, though, there is
no tunneling suppression in this channel, and the hyperradial
wave function merely accumulates phase in this region. As
a result, the WKB tunneling probability is controlled by the
transition at R ∼ a(1),a(3):

e−2γ ∝ exp

[
−2

∫ RT

a(1)
dR

√
4

R2

]
. (61)

Inserting this into Eq. (49) gives the scaling of three-body
recombination to deep dimer states as

K3 ∝ [a(1)]4. (62)

Again, it is assumed here that a(1) and a(3) are similar in
magnitude. If this is not the case, for instance, if a(1) � a(3),
then a scaling behavior similar to that of Eq. (58) is recovered:

K3 ∝ [a(1)a(3)]2. (63)

In Region IV there is only a single weekly bound dimer state
available, and trap loss will occur through recombination to
deeply bound dimers. The path here is similar to that of Region
III, where a transition happens from the lowest three-body
channel to the weakly bound dimer channel. From there
the hyperradial wave function can go to the small R region

022706-9



SETH T. RITTENHOUSE, N. P. MEHTA, AND CHRIS H. GREENE PHYSICAL REVIEW A 82, 022706 (2010)

FIG. 7. (Color online) A schematic of the lowest hyperradial
potential with the path for three-body recombination to deeply bound
states. The lowest (green) line represents the hyperradial potential for
a deeply bound dimer state. Labeled grey areas indicate transition
regions from one universal behavior to another, and the far-left blue
region indicates the short-range regime.

without further suppression. This process then yields the same
three-body recombination scaling behavior as Eq. (62) when
a(1) ∼ |a(3)|. When a(3) � |a(1)|, the scaling predicted by
Eq. (63) is recovered.

4. Region V (|a(2)| � |a(3)| � |a(1)|)
In this regime the recombination process is entirely con-

trolled by the lowest three-body channel, shown schematically
in Fig. 7. The hyperradial potential has three universal regimes.
The first, when r0 � R � |a(2)| � |a(3)| � |a(1)|, is identical
to that of three strongly interacting bosons. The hyperangular
eigenvalue (ν + 2)2 is the first solution to Eq. (42) in the limit
where R/a → 0, yielding the hyperradial potential,

U (R) = h̄2

2µ

−(s0)2 − 1/4

R2
,

(64)
s0 = 1.0062.

In the next regime, when r0 � |a(2)| � R � |a(3)| � |a(1)|,
the three particles are far enough apart so as not to see
the smallest scattering length. As a result the hyperangular
eigenvalue is governed by Eq. (40) with the BBX symmetry
of Table I imposed:

U (R) = h̄2

2µ

−(s1)2 − 1/4

R2
,

(65)
s1 = 0.4137.

In the regime where r0 � |a(2)| � |a(3)| � R � |a(1)|, there
is only one scattering length seen by the system, and the
universal potential becomes that of Eq. (55). In the final regime,
where the hyperradius is much larger than all of the scattering
lengths, the potential goes to the noninteracting behavior of a
hyperspherical harmonic.

The transition to a deeply bound dimer state occurs
at R ∼ r0 following the path shown in Fig. 7. To get to
this region, the wave function must first tunnel through a
barrier, leading to suppression of the recombination rate. Once
through the barrier, the wave function accumulates phase

in the attractive potential regime. If enough phase can be
accumulated in this regime, then a three-body bound state (a
so-called Efimov state) can be present leading to a resonance
in the recombination rate. The final recombination rate for this
process is [4,6,27,28]

K3 ∝ A
sinh 2η

cos2(φWKB) + sinh2 η
, (66)

where η is controlled by the short-range properties of the
system, φWKB is the WKB phase accumulated in the attractive
regime from r0 to |a(3)|, and A is proportional to the tunneling
suppression through the barrier:

A ∝ [a(3)a(1)]2, (67)

φWKB = s1 ln

(
a(3)

a(2)

)
+ s0 ln

( |a(2)|
r0

)
. (68)

Figure 8(a) shows the log of the three-body recombination
rate in arbitrary units as a function of the magnetic field with
η = 0.001. The short-range length scale here is chosen to be
approximately the van der Waals length of 6Li, r0 = rd ≈
30 atomic units. Figure 8(b) shows the scattering lengths in
the same region of magnetic fields for reference. An Efimov
resonance can clearly be seen at B = 942 G when φWKB =
3π/2. This is in rough agreement with the predicted position
of B = 1160 G found in Ref. [33]. The exact position of this
resonance is somewhat sensitive to the short-range length scale
r0 which should be fit to experimental data. We have chosen
r0 as the Van der Waals length here for illustrative purposes.
A WKB phase that is 3π/2 at the resonance indicates that
this corresponds to the second Efimov state intersecting the
continuum. The first Efimov state remains bound throughout
this region. Because a(1) becomes resonantly large as B →
834.15 G, the [a(3)]2 scaling from Eq. (67) gives the large
recombination rate seen in the lower field region of Fig. 8(a).
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FIG. 8. (Color online) (a) The three-body recombination rate
from Eq. (66) for 6Li in arbitrary units as a function of magnetic
field with η = 0.001 and the short-range length scale chosen to
be approximately the van der Waals length, r0 = rd ≈ 30 a.u. The
large y-axis tick marks indicate orders of magnitude. (b) The three
scattering lengths a(1) (solid black curve), a(2) (dashed red curve), and
a(3) (dot-dashed blue curve) in atomic units as a function of magnetic
field in region V.
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With three overlapping resonances, 6Li provides a rich
hunting ground for the study of three-body physics. Further,
because it is a fermionic atom, three-body interactions in-
volving only two of the three lowest components are strongly
suppressed meaning that the majority of the three-body physics
is controlled by a system of three distinguishable particles.
While only the processes of three-body recombination that
lead to trap losses were studied in this section, there is still a
rich and complex array of behaviors not discussed that can be
described using the model presented here.

V. SUMMARY

In this work we have developed a form for the hyperangular
Green’s function in arbitrary dimensions. The derivation of the
Green’s function is simple and follows easily from a standard
Sturm-Liouville problem. By dividing a d-dimensional space
into physically meaningful subspaces, this Green’s function
avoids the slow convergence often seen in a spectral expan-
sions form, while maintaining a physically intuitive set of
hyperangular coordinates.

We have also used the hyperangular Green’s function
to solve the three-body problem with zero-range s-wave
interaction for arbitrary scattering lengths, particle masses,
and total angular momentum. With simple root finding,
the adiabatic hyperangular channel functions and adiabatic
potentials can be extracted. The resulting transcendental
equation is in exact agreement with that derived using
Faddeev-like decompositions. To complete the problem, we
have also derived general expressions for the nonadiabatic
corrections to the potentials that are analytic up to root
finding.

The results of the general three-body problem were then
applied to the three lowest hyperfine components of 6Li near a
set of overlapping resonances. By a simple WKB formalism,
the scaling behavior of the rate constant for trap loss three-body
recombination events was extracted throughout the overlap-
ping two-body resonances. Signatures of an Efimov style
resonance are also predicted to appear at high field strengths.
Throughout the resonances, all of the scattering lengths are
very large compared to the length scale of the two-body inter-
action, indicating that the results presented here are universal.
The simple and intuitive nature of the Lippmann-Schwinger
equation in the three-body problem indicates that this Green’s
function based method may be applicable in the context of the
four-body problem, but this extension is the subject of ongoing
inquiry.
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APPENDIX

In this Appendix we sketch the derivation of the formulas
for the nonadiabatic P and Q matrix elements given in
Eqs. (44) and (46). We begin by considering matrix elements
dealing with the derivative of the adiabatic Schrödinger
equation:

〈�′
n|(�2 − εm)|�m〉 = 0,

(A1)−ε′
n〈�m|�n〉 + 〈�m|(�2 − εn)|�′

n〉 = 0,

where εn = νn(νn + 4) is the hyperangular eigenvalue of
the nth adiabatic eigenfunction, and the prime indicates a
hyperradial derivative has been taken. Taking the difference
of these leads to an equation for the nonadiabatic coupling
matrix element Pmn for m �= n:

〈�′
n|�2|�m〉 − 〈�m|�2|�′

n〉 − (εm − εn)Pmn + δmnε
′
n = 0.

(A2)

The difference 〈�′
n|�2|�m〉 − 〈�m|�2|�′

n〉 is given by the
boundary conditions of the wave functions �m and �n at the
coalescence points:

〈�′
n|�2|�m〉 − 〈�m|�2|�′

n〉

=
∑

k

[
a(k)

dkR
Cm

∂

∂R
C(k)

n − C(k)
m

∂

∂R

(
a(k)

dkR
C(k)

n

)]

=
∑

k

C(k)
m C(k)

n

a(k)

dkR2
. (A3)

Here the LM subscripts in the boundary values C
(k)
LM have been

suppressed. Inserting Eq. (A3) into Eq. (A2) yields Eq. (44),

Pmn =
∑

k C(k)
m C(k)

n
a(k)

dkR2

(εm − εn)
for n �= m,

(A4)

−ε′
n =

∑
k

(
C(k)

n

)2 a(k)

dkR2
.

A similar derivation provides the matrix elements Qmn given
in Eq. (46).
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H. C. Nägerl, and R. Grimm, Phys. Rev. Lett. 102, 140401
(2009).

[15] U. Fano, Phys. Rev. A 24, 2402 (1981).
[16] U. Fano, Phys. Today 29, 32 (1976).
[17] C. W. Clark and C. H. Greene, Phys. Rev. A 21, 1786 (1980).
[18] J. Avery, Hyperspherical Harmonics: Applications in Quantum

Theory (Kluwer Academic, Boston, MA, 1989).
[19] Y. Zhou, C. D. Lin, and J. Shertzer, J. Phys. B 26, 3937 (1993).
[20] C. D. Lin, Phys. Rep. 257, 1 (1995).
[21] V. Kokoouline and C. H. Greene, Phys. Rev. A 68, 012703

(2003).
[22] M. Fabre de la Ripelle, Few-Body Syst. 14, 1 (1993).
[23] R. Szmytkowski, J. Math. Phys. 47, 063506 (2006).
[24] Y. F. Smirnov and K. V. Shitikova, Fiz. Elem. Chastits. At. Yadra.

8, 847 (1977) [Sov. J. Part. Nucl. 8, 344 (1977)].

[25] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1999).

[26] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, With Formulas, Graphs, and Mathematical Tables
(Dover, New York, 1965).

[27] E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, Phys.
Rep. 347, 373 (2001).

[28] J. P. D’Incao and B. D. Esry, Phys. Rev. Lett. 94, 213201 (2005).
[29] E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[30] M. Ross and G. Shaw, Ann. Phys. (NY) 13, 147 (1961).
[31] V. Efimov, Phys. Lett. B 33, 563 (1970).
[32] O. I. Kartavtsev and A. V. Malykh, J. Phys. B 40, 1429 (2007).
[33] E. Braaten, H. W. Hammer, D. Kang, and L. Platter, Phys. Rev.

Lett. 103, 073202 (2009).
[34] P. Naidon and M. Ueda, Phys. Rev. Lett. 103, 073203 (2009).
[35] J. P. D’Incao and B. D. Esry, Phys. Rev. Lett. 103, 083202

(2009).
[36] S. T. Rittenhouse, Phys. Rev. A 81, 040701(R) (2010).
[37] M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005).
[38] N. P. Mehta, S. T. Rittenhouse, J. P. D’Incao, J. von Stecher, and

C. H. Greene, Phys. Rev. Lett. 103, 153201 (2009).
[39] R. Langer, Phys. Rev. 51, 669 (1937).

022706-12

http://dx.doi.org/10.1103/PhysRevLett.103.163202
http://dx.doi.org/10.1103/PhysRevLett.103.163202
http://dx.doi.org/10.1126/science.1182840
http://dx.doi.org/10.1126/science.1182840
http://dx.doi.org/10.1038/nphys1253
http://dx.doi.org/10.1038/nphys1253
http://dx.doi.org/10.1103/PhysRevLett.102.140401
http://dx.doi.org/10.1103/PhysRevLett.102.140401
http://dx.doi.org/10.1103/PhysRevA.24.2402
http://dx.doi.org/10.1063/1.3023898
http://dx.doi.org/10.1103/PhysRevA.21.1786
http://dx.doi.org/10.1088/0953-4075/26/21/026
http://dx.doi.org/10.1016/0370-1573(94)00094-J
http://dx.doi.org/10.1103/PhysRevA.68.012703
http://dx.doi.org/10.1103/PhysRevA.68.012703
http://dx.doi.org/10.1007/BF01344365
http://dx.doi.org/10.1063/1.2203430
http://dx.doi.org/10.1016/S0370-1573(00)00107-1
http://dx.doi.org/10.1016/S0370-1573(00)00107-1
http://dx.doi.org/10.1103/PhysRevLett.94.213201
http://dx.doi.org/10.1016/j.physrep.2006.03.001
http://dx.doi.org/10.1016/0003-4916(61)90078-1
http://dx.doi.org/10.1016/0370-2693(70)90349-7
http://dx.doi.org/10.1088/0953-4075/40/7/011
http://dx.doi.org/10.1103/PhysRevLett.103.073202
http://dx.doi.org/10.1103/PhysRevLett.103.073202
http://dx.doi.org/10.1103/PhysRevLett.103.073203
http://dx.doi.org/10.1103/PhysRevLett.103.083202
http://dx.doi.org/10.1103/PhysRevLett.103.083202
http://dx.doi.org/10.1103/PhysRevA.81.040701
http://dx.doi.org/10.1103/PhysRevLett.94.103201
http://dx.doi.org/10.1103/PhysRevLett.103.153201
http://dx.doi.org/10.1103/PhysRev.51.669

	Green’s Functions and the Adiabatic Hyperspherical Method
	Repository Citation

	tmp.1400114638.pdf.X7khL

