52,715 research outputs found

    Slow synaptic dynamics in a network: from exponential to power-law forgetting

    Full text link
    We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modelled from the usual Hebbian perspective, while competition is modelled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal 1/t1/t power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal 1/t1/\sqrt{t} relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most novel and important result of our present investigations.Comment: 12 pages, 8 figures. Phys. Rev. E (2014) to appea

    Determination of machinable volume for finish cuts in CAPP

    Get PDF
    Identification of machinable volume for finish cut is a complex task as it involves the details not only of the final product but also the intermediate part obtained from rough machining of the blank. A feature recognition technique that adopts a rule-based methodology is required for calculating this small, complex shaped finish cut volume. This paper presents the feature recognition module in a CAPP system that calculates the intermediate finish cut volume by adopting a rule based syntactic pattern recognition approach. In this module, the interfacer uses STEP AP203/214, a CAD neutral format, to trace the coordinate point information and to calculate the machinable volume. Two illustrative examples are given to explain the proposed syntactic pattern approach for prismatic parts

    Competition and cooperation:aspects of dynamics in sandpiles

    Full text link
    In this article, we review some of our approaches to granular dynamics, now well known to consist of both fast and slow relaxational processes. In the first case, grains typically compete with each other, while in the second, they cooperate. A typical result of {\it cooperation} is the formation of stable bridges, signatures of spatiotemporal inhomogeneities; we review their geometrical characteristics and compare theoretical results with those of independent simulations. {\it Cooperative} excitations due to local density fluctuations are also responsible for relaxation at the angle of repose; the {\it competition} between these fluctuations and external driving forces, can, on the other hand, result in a (rare) collapse of the sandpile to the horizontal. Both these features are present in a theory reviewed here. An arena where the effects of cooperation versus competition are felt most keenly is granular compaction; we review here a random graph model, where three-spin interactions are used to model compaction under tapping. The compaction curve shows distinct regions where 'fast' and 'slow' dynamics apply, separated by what we have called the {\it single-particle relaxation threshold}. In the final section of this paper, we explore the effect of shape -- jagged vs. regular -- on the compaction of packings near their jamming limit. One of our major results is an entropic landscape that, while microscopically rough, manifests {\it Edwards' flatness} at a macroscopic level. Another major result is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics

    A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posteriorprior)\mathrm{KL}(\text{posterior} \operatorname{\|} \text{prior}) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P)L_2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with LL_\infty. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity.Comment: 38 page

    On the Sample Complexity of Predictive Sparse Coding

    Full text link
    The goal of predictive sparse coding is to learn a representation of examples as sparse linear combinations of elements from a dictionary, such that a learned hypothesis linear in the new representation performs well on a predictive task. Predictive sparse coding algorithms recently have demonstrated impressive performance on a variety of supervised tasks, but their generalization properties have not been studied. We establish the first generalization error bounds for predictive sparse coding, covering two settings: 1) the overcomplete setting, where the number of features k exceeds the original dimensionality d; and 2) the high or infinite-dimensional setting, where only dimension-free bounds are useful. Both learning bounds intimately depend on stability properties of the learned sparse encoder, as measured on the training sample. Consequently, we first present a fundamental stability result for the LASSO, a result characterizing the stability of the sparse codes with respect to perturbations to the dictionary. In the overcomplete setting, we present an estimation error bound that decays as \tilde{O}(sqrt(d k/m)) with respect to d and k. In the high or infinite-dimensional setting, we show a dimension-free bound that is \tilde{O}(sqrt(k^2 s / m)) with respect to k and s, where s is an upper bound on the number of non-zeros in the sparse code for any training data point.Comment: Sparse Coding Stability Theorem from version 1 has been relaxed considerably using a new notion of coding margin. Old Sparse Coding Stability Theorem still in new version, now as Theorem 2. Presentation of all proofs simplified/improved considerably. Paper reorganized. Empirical analysis showing new coding margin is non-trivial on real dataset

    Dynamics of Shear-Transformation Zones in Amorphous Plasticity: Formulation in Terms of an Effective Disorder Temperature

    Full text link
    This investigation extends earlier studies of a shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. My main purpose here is to explore the possibility that the configurational degrees of freedom of such systems fall out of thermodynamic equilibrium with the heat bath during persistent mechanical deformation, and that the resulting state of configurational disorder may be characterized by an effective temperature. The further assumption that the population of STZ's equilibrates with the effective temperature allows the theory to be compared directly with experimentally measured properties of metallic glasses, including their calorimetric behavior. The coupling between the effective temperature and mechanical deformation suggests an explanation of shear-banding instabilities.Comment: 29 pages, 11 figure
    corecore