10 research outputs found

    A TESS Dress Rehearsal: Planetary Candidates and Variables from K2 Campaign 17T

    Get PDF
    We produce light curves for all ∼34,000 targets observed with K2 in Campaign 17 (C17), identifying 34 planet candidates, 184 eclipsing binaries, and other 222 periodic variables. The forward-facing direction of the C17 field means follow-up can begin immediately now that the campaign has concluded and interesting targets have been identified. The C17 field has a large overlap with C6, so this latest campaign also offers an infrequent opportunity to study a large number of targets already observed in a previous K2 campaign. The timing of the C17 data release, shortly before science operations begin with the Transiting Exoplanet Survey Satellite (TESS), also lets us exercise some of the tools and methods developed for identification and dissemination of planet candidates from TESS. We find excellent agreement between these results and those identified using only K2-based tools. Among our planet candidates are several planet candidates with sizes <4 R[subscript ⊕] and orbiting stars with Kp ≲ 10 (indicating good RV targets of the sort TESS hopes to find) and a Jupiter-sized single-transit event around a star already hosting a 6 day planet candidate. Key words: methods, data analysis, planets and satellites, detection – techniques, photometricUnited States. National Aeronautics and Space Administration (K2GO Grant 80NSSC18K0308

    A TESS Dress Rehearsal: Planetary Candidates and Variables from K2 Campaign 17

    Get PDF
    We produce light curves for all ∼34,000 targets observed with K2 in Campaign 17 (C17), identifying planet candidates, eclipsing binaries, and other periodic variables. The forward-facing direction of the C17 field means follow-up can begin immediately now that the campaign has concluded and interesting targets have been identified. The C17 field has a large overlap with C6, so this latest campaign also offers an infrequent opportunity to study a large number of targets already observed in a previous K2 campaign. The timing of the C17 data release, shortly before science operations begin with the Transiting Exoplanet Survey Satellite (TESS), also lets us exercise some of the tools and methods developed for identification and dissemination of planet candidates from TESS. We find excellent agreement between these results and those identified using only K2-based tools. Among our planet candidates are several planet candidates with sizes <4 R ⊕ and orbiting stars with Kp ≲ 10 (indicating good RV targets of the sort TESS hopes to find) and a Jupiter-sized single-transit event around a star already hosting a 6 day planet candidate

    A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18

    Get PDF
    Planets occur most frequently around cool dwarfs, but only a handful of specific examples are known to orbit the latest-type M stars. Using TESS photometry, we report the discovery of two planets transiting the low-mass star called LP 791-18 (identified by TESS as TOI 736). This star has spectral type M6V, effective temperature 2960 K, and radius 0.17 R o, making it the third-coolest star known to host planets. The two planets straddle the radius gap seen for smaller exoplanets; they include a 1.1R ⊕ planet on a 0.95 day orbit and a 2.3R ⊕ planet on a 5 day orbit. Because the host star is small the decrease in light during these planets' transits is fairly large (0.4% and 1.7%). This has allowed us to detect both planets' transits from ground-based photometry, refining their radii and orbital ephemerides. In the future, radial velocity observations and transmission spectroscopy can both probe these planets' bulk interior and atmospheric compositions, and additional photometric monitoring would be sensitive to even smaller transiting planets

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes

    Resolving the Mysteries of Highly Irradiated Planets: Observations and Simulations

    No full text
    Modern exoplanet science has an observational bias towards short-period planets. Among other things, these planets tend to be highly irradiated, either thermally resulting in high equilibrium temperatures and/or through high energy FUV/Xray radiation. The resulting planets exhibit a diverse array of physical characteristics unlike those seen on Earth. I present a collection of works broadly encompassed by the theme of understanding highly irradiated planets and a set of new techniques I develop to further analysis of these strange worlds. First I discuss observations of Upsilon Andromedae b, a non-transiting planet I have observed the atmosphere of for the first time, and Venus, Earth’s twin sister that turned out so different. Each of these observations is enabled by a new method I introduce for that class of analyses. I then present my work on radiation-hydrodynamics simulations of atmospheres subject to intense high energy radiation, for which I have developed a new simulation code with a unique purpose.Ph.D

    Michigan CERN Research Abroad Program

    No full text

    A super-Earth and sub-Neptune transiting the late-type M dwarf LP 791-18

    No full text
    Planets occur most frequently around cool dwarfs, but only a handful of specific examples are known to orbit the latest-type M stars. Using TESS photometry, we report the discovery of two planets transiting the low-mass star called LP 791-18 (identified by TESS as TOI 736). This star has spectral type M6V, effective temperature 2960 K, and radius 0.17 R o, making it the third-coolest star known to host planets. The two planets straddle the radius gap seen for smaller exoplanets; they include a 1.1R ⊕ planet on a 0.95 day orbit and a 2.3R ⊕ planet on a 5 day orbit. Because the host star is small the decrease in light during these planets' transits is fairly large (0.4% and 1.7%). This has allowed us to detect both planets' transits from ground-based photometry, refining their radii and orbital ephemerides. In the future, radial velocity observations and transmission spectroscopy can both probe these planets' bulk interior and atmospheric compositions, and additional photometric monitoring would be sensitive to even smaller transiting planets. ©2019NSF (grant no. AST-1824644)NASA Caltech/JPL (grant no. RSA-1610091

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    No full text
    We present 2,241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its two-year prime mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously-known planets recovered by TESS observations. We describe the process used to identify TOIs and investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI Catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well-suited for detailed follow-up observations. The TESS data products for the Prime Mission (Sectors 1-26), including the TOI Catalog, light curves, full-frame images, and target pixel files, are publicly available on the Mikulski Archive for Space Telescopes
    corecore