172 research outputs found

    Uniform fractional part: a simple fast method for generating continuous random variates

    No full text
    A known theorem in probability is adopted and through a probabilistic approach, it is generalized to develop a method for generating random deviates from the distribution of any continuous random variable. This method, which may be considered as an approximate version of the Inverse Transform algorithm, takes two random numbers to generate a random deviate, while maintaining all the other advantages of the Inverse Transform method, such as the possibility of generating ordered as well as correlated deviates and being applicable to all density functions, regardless of their parameter value

    Promises of artificial intelligence in neuroradiology:a systematic technographic review

    Get PDF
    Purpose To conduct a systematic review of the possibilities of artificial intelligence (AI) in neuroradiology by performing an objective, systematic assessment of available applications. To analyse the potential impacts of AI applications on the work of neuroradiologists. Methods We identified AI applications offered on the market during the period 2017–2019. We systematically collected and structured information in a relational database and coded for the characteristics of the applications, their functionalities for the radiology workflow and their potential impacts in terms of ‘supporting’, ‘extending’ and ‘replacing’ radiology tasks. Results We identified 37 AI applications in the domain of neuroradiology from 27 vendors, together offering 111 functionalities. The majority of functionalities ‘support’ radiologists, especially for the detection and interpretation of image findings. The second-largest group of functionalities ‘extends’ the possibilities of radiologists by providing quantitative information about pathological findings. A small but noticeable portion of functionalities seek to ‘replace’ certain radiology tasks. Conclusion Artificial intelligence in neuroradiology is not only in the stage of development and testing but also available for clinical practice. The majority of functionalities support radiologists or extend their tasks. None of the applications can replace the entire radiology profession, but a few applications can do so for a limited set of tasks. Scientific validation of the AI products is more limited than the regulatory approval

    Simultaneous Modeling of Young's Modulus, Yield Stress, and Rupture Strain of Gelatin/Cellulose Acetate Microfibrous/Nanofibrous Scaffolds Using RSM.

    Full text link
    Electrospinning is a promising method to fabricate bioengineered scaffolds, thanks to utilizing various types of biopolymers, flexible structures, and also the diversity of output properties. Mechanical properties are one of the major components of scaffold design to fabricate an efficacious artificial substitute for the natural extracellular matrix. Additionally, fiber orientations, as one of the scaffold structural parameters, could play a crucial role in the application of fabricated fibrous scaffolds. In this study, gelatin was used as a highly biocompatible polymer in blend with cellulose acetate (CA), a polysaccharide, to enhance the achievable range of mechanical characteristics to fabricated fibrous electrospun scaffolds. By altering input variables, such as polymers concentration, weight ratio, and mandrel rotation speed, scaffolds with various mechanical and morphological properties could be achieved. As expected, the electrospun scaffold with a higher mandrel rotation speed shows higher fiber alignment. A wide range of mechanical properties were gained through different values of polymer ratio and total concentration. A general improvement in mechanical strength was observed by increasing the concentration and CA content in the solution, but contradictory effects, such as high viscosity in more concentrated solutions, influenced the mechanical characteristics as well. A response surface method was applied on experimental results in order to describe a continuous variation of Young's modulus, yield stress, and strain at rupture. A full quadratic version of equations with the 95% confidence level was applied for the response modeling. This model would be an aid for engineers to adjust mandrel rotation speed, solution concentration, and gelatin/CA ratio to achieve desired mechanical and structural properties

    A Thoroughgoing Design of a Rapid-cycle Microfluidic Droplet-based PCR Device to Amplify Rare DNA Strands

    Get PDF
    DNA is a molecule and assortment of fruitful information of organisms and a wide range of viruses. Polymerase chain reaction (PCR) is a process used to amplify DNA strands in order to generate millions of them and extract the applicable information. Although conventional methods for PCR are flourishing to a certain extent, they have such major drawbacks as contamination, high material consumption, and low-speed function. By the combination of PCR devices with the microfluidic approach and integrating them with droplet generation technology, the mentioned problems can be eliminated. In this study, a novel two-step rapid-cycle droplet-based PCR (dPCR) device, considering the design of microchannel and heat transfer system, has been presented. First, numerous studies have been conducted to select the proper droplet generator for the integration of the droplet generation with the PCR device. Then, with the careful attention to the requirements of a PCR device, the geometry of different zones of the PCR device has been, meticulously, designed. In the next and last step, the heat transfer system for the designed zones of the PCR device has been planned. Afterward, results are examined carefully which indicate that in a cycle of PCR, they are not any major discrepancies between the designed dPCR and the ideal one—the one that is intended to be created

    Non-variant specific antibody responses to the C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-119) in Iranians exposed to unstable malaria transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The C-terminal region of <it>Plasmodium falciparum </it>merozoite surface protein-1 (PfMSP-1<sub>19</sub>) is a leading malaria vaccine candidate antigen. However, the existence of different variants of this antigen can limit efficacy of the vaccine development based on this protein. Therefore, in this study, the main objective was to define the frequency of PfMSP-1<sub>19 </sub>haplotypes in malaria hypoendemic region of Iran and also to analyse cross-reactive and/or variant-specific antibody responses to four PfMSP-1<sub>19 </sub>variant forms.</p> <p>Methods</p> <p>The PfMSP-1<sub>19 </sub>was genotyped in 50 infected subjects with <it>P. falciparum </it>collected during 2006-2008. Four GST-PfMSP-1<sub>19 </sub>variants (E/TSR/L, E/TSG/L, E/KNG/F and Q/KNG/L) were produced in <it>Escherichia coli </it>and naturally occurring IgG antibody to these proteins was evaluated in malaria patients' sera (n = 50) using ELISA. To determine the cross-reactivity of antibodies against each PfMSP-1<sub>19 </sub>variant in <it>P. falciparum-</it>infected human sera, an antibody depletion assay was performed in eleven corresponding patients' sera.</p> <p>Results</p> <p>Sequence data of the PfMSP-1<sub>19 </sub>revealed five variant forms in which the haplotypes Q/KNG/L and Q/KNG/F were predominant types and the second most frequent haplotype was E/KNG/F. In addition, the prevalence of IgG antibodies to all four PfMSP-1<sub>19 </sub>variant forms was equal and high (84%) among the studied patients' sera. Immunodepletion results showed that in Iranian malaria patients, Q/KNG/L variant could induce not only cross-reactive antibody responses to other PfMSP-1<sub>19 </sub>variants, but also could induce some specific antibodies that are not able to recognize the E/TSG/L or E/TSR/L variant forms.</p> <p>Conclusion</p> <p>The present findings demonstrated the presence of non-variant specific antibodies to PfMSP-1<sub>19 </sub>in Iranian falciparum malaria patients. This data suggests that polymorphism in PfMSP-1<sub>19 </sub>is less important and one variant of this antigen, particularly Q/KNG/L, may be sufficient to be included in PfMSP-1<sub>19</sub>-based vaccine.</p

    Application of phasor measurement units for monitoring power system dynamic performance

    Get PDF
    This Working Group is a sequel to a previous working group on Wide Area Monitoring and Control for Transmission Capability Enhancement, which published the Technical Brochure 330 in 2007. Since then the synchrophasor technology has advanced rapidly and many utilities around the world have installed hundreds of PMUs in their networks. In this Technical Brochure, we look at the current state of the technology and the extent to which it has been used in the industry. As the technology has matured, it is also important to understand the communication protocols used in synchrophasor networks and their relevant cyber-security issues. These concerns are briefly discussed in the brochure. The applications of Phasor Measurement Units (PMU) measurements reported here are divided into three categories: (a) applications already installed in utility networks, (b) applications that are well-tested, but not yet installed, and (c) applications that are beneficial to the industry, but not fully developed yet. The most common and mature applications are wide area monitoring, state estimation, and model validation. Out of these three applications, wide area monitoring is well established in the industry. The protection and control applications are emerging as evident from the reported examples. The experience of using remote synchrophasor measurements as feedback control signals is not widely reported by the industry. In parallel to this Working Group, Study Committee B5 had a Working Group on “Wide area protection and control technologies.” The Technical Brochure 664 published by this Working Group in September 2016 reviews synchrophasor technology and discusses the industry experience with wide area protection and control. The North American synchrophasor Initiative (NASPI) is another technical group that has gathered and reported a wide range of PMU experiences of industry and researchers. In summary, the field-tested applications presented in this Technical Brochure are a testimony to the confidence of utilities in the synchrophasor technology. The progress in state estimation techniques indicates that synchrophasor measurements will become a standard part of energy management and security assessment systems in the near future

    Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season.</p> <p>Methods</p> <p>In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to <it>Plasmodium falciparum </it>Glutamate Rich Protein (GLURP) and <it>Plasmodium vivax </it>Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method.</p> <p>Results</p> <p>A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for <it>P. falciparum </it>and 7.9% and 6.0% for <it>P. vivax </it>in August and November respectively). <it>P. falciparum </it>force of infection was higher in the eastern region and increased between August and November, whilst <it>P. vivax </it>force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for <it>P. falciparum </it>in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to <it>P. falciparum </it>during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases.</p> <p>Discussion</p> <p>In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.</p
    • …
    corecore