96 research outputs found

    Massive Star Formation in the Molecular Ring Orbiting the Black Hole at the Galactic Center

    Full text link
    A ring of dense molecular gas extending 2-7 pc orbits the supermassive black hole Sgr A* at the center of our Galaxy. Using the Green Bank Telescope, we detected water maser lines and both narrow (0.35 km/s) and broad (30 - 50 km/s) methanol emission from the molecular ring. Two of the strongest methanol lines at 44 GHz are confirmed as masers by interferometric observations. These class I methanol masers are collisionally excited and are signatures of early phases of massive star formation in the disk of the Galaxy, suggesting that star formation in the molecular ring is in its early phase. Close inspection of the kinematics of the associated molecular clumps in the HCN (J=1-0) line reveals broad red-shifted wings indicative of disturbance by protostellar outflows from young (few times 10^4 yr), massive stars embedded in the clumps. The thermal methanol profile has a similar shape, with a narrow maser line superimposed on a broad, red-shifted wing. Additional evidence for the presence of young massive protostars is provided by shocked molecular hydrogen and a number of striking ionized and molecular linear filaments in the vicinity of methanol sources suggestive of 0.5-pc scale protostellar jets. Given that the circumnuclear molecular ring is kinematically unsettled and thus is likely be the result of a recent capture, the presence of both methanol emission and broad, red-shifted HCN emission suggests that star formation in the circumnuclear ring is in its infancy.Comment: 13 pages, 4 figures, ApJ Letters (in press

    New Molecular Species In Comet C/1995 (Hale-Bopp) Observed with the Caltech Submillimeter Observatory

    Get PDF
    We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H(13)CN, and H3O(+) in comet C/1995 O1 (Hale-Bopp) obtained in February-April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996 B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) x 10(exp -4). HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 +/- 0.2) x 10(exp -4). Four transitions of SO are detected and the derived fractional abundance, (2-8) x 10(exp -3), is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) x 10(exp -4). H3O(+) is detected for the first time from the ground. The H(13)CN (3-2) transition is also detected and the derived HCN/H(13)CN abundance ratio is 90 +/- 15, consistent with the terrestrial C-13/C-12 ratio. in addition, a number of other molecular species are detected, including HNC, OCS, HCO(+), CO(+), and CN (the last two are first detections in a comet at radio wavelengths)

    A Submillimeter HCN Laser in IRC+10216

    Get PDF
    We report the detection of a strong submillimeter wavelength HCN laser line at a frequency near 805 GHz toward the carbon star IRC+10216. This line, the J=9-8 rotational transition within the (04(0)0) vibrationally excited state, is one of a series of HCN laser lines that were first detected in the laboratory in the early days of laser spectroscopy. Since its lower energy level is 4200 K above the ground state, the laser emission must arise from the inner part of IRC+10216's circumstellar envelope. To better characterize this environment, we observed other, thermally emitting, vibrationally excited HCN lines and find that they, like the laser line, arise in a region of temperature approximately 1000 K that is located within the dust formation radius; this conclusion is supported by the linewidth of the laser. The (04(0)0), J=9-8 laser might be chemically pumped and may be the only known laser (or maser) that is excited both in the laboratory and in space by a similar mechanism.Comment: 11 pages, 3 figure

    Masers and Outflows in the W3(OH)/W3(H2O) region

    Full text link
    Methanol masers and molecular shock tracers were observed in the W3(OH)/W3(H2_2O) region with the BIMA array and the Onsala 20m radiotelescope. Characteristics of the outflows in the region are discussed. A model of the W3(OH) methanol maser formation region is constructed.Comment: 4 pages, 2 figures, numerous journal misprints are correcte

    A search for 85.5- and 86.6-GHz methanol maser emission

    Full text link
    We have used the Australia Telescope National Facility Mopra 22m millimetre telescope to search for emission from the 85.5-GHz and 86.6-GHz transitions of methanol. The search was targeted towards 22 star formation regions which exhibit maser emission in the 107.0-GHz methanol transition, as well as in the 6.6-GHz transition characteristic of class II methanol maser sources. A total of 22 regions were searched at 85.5 GHz resulting in 5 detections, of which 1 appears to be a newly discovered maser. For the 86.6-GHz transition observations were made of 18 regions which yielded 2 detections, but no new maser sources. This search demonstrates that emission from the 85.5- and 86.6-GHz transitions is rare. Detection of maser emission from either of these transitions therefore indicates the presence of special conditions, different from those in the majority of methanol maser sources. We have observed temporal variability in the 86.6-GHz emission towards 345.010+1.792, which along with the very narrow line width, confirms that the emission is a maser in this source. We have combined our current observations with published data for the 6.6-, 12.1-, 85.5-, 86.6-, 107.0-, 108.8- and 156.6-GHz transitions for comparison with the maser model of Sobolev & Deguchi (1994). This has allowed us to estimate the likely ranges of dust temperature, gas density, and methanol column density, both for typical methanol maser sources and for those sources which also show 107.0-GHz emission.Comment: 11 pages, accepted for publication in MNRAS, Latex, mn2e.cl

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin
    corecore