90 research outputs found

    Secreted osteopontin is highly polymerized in human airways and fragmented in asthmatic airway secretions.

    Get PDF
    BackgroundOsteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family and a cytokine with diverse biologic roles. OPN undergoes extensive post-translational modifications, including polymerization and proteolytic fragmentation, which alters its biologic activity. Recent studies suggest that OPN may contribute to the pathogenesis of asthma.MethodologyTo determine whether secreted OPN (sOPN) is polymerized in human airways and whether it is qualitatively different in asthma, we used immunoblotting to examine sOPN in bronchoalveolar lavage (BAL) fluid samples from 12 healthy and 21 asthmatic subjects (and in sputum samples from 27 healthy and 21 asthmatic subjects). All asthmatic subjects had mild to moderate asthma and abstained from corticosteroids during the study. Furthermore, we examined the relationship between airway sOPN and cellular inflammation.Principal findingsWe found that sOPN in BAL fluid and sputum exists in polymeric, monomeric, and cleaved forms, with most of it in polymeric form. Compared to healthy subjects, asthmatic subjects had proportionately less polymeric sOPN and more monomeric and cleaved sOPN. Polymeric sOPN in BAL fluid was associated with increased alveolar macrophage counts in airways in all subjects.ConclusionsThese results suggest that sOPN in human airways (1) undergoes extensive post-translational modification by polymerization and proteolytic fragmentation, (2) is more fragmented and less polymerized in subjects with mild to moderate asthma, and (3) may contribute to recruitment or survival of alveolar macrophages

    The Laboratory-Based Intermountain Validated Exacerbation (LIVE) Score Identifies Chronic Obstructive Pulmonary Disease Patients at High Mortality Risk.

    Get PDF
    Background: Identifying COPD patients at high risk for mortality or healthcare utilization remains a challenge. A robust system for identifying high-risk COPD patients using Electronic Health Record (EHR) data would empower targeting interventions aimed at ensuring guideline compliance and multimorbidity management. The purpose of this study was to empirically derive, validate, and characterize subgroups of COPD patients based on routinely collected clinical data widely available within the EHR. Methods: Cluster analysis was used in 5,006 patients with COPD at Intermountain to identify clusters based on a large collection of clinical variables. Recursive Partitioning (RP) was then used to determine a preferred tree that assigned patients to clusters based on a parsimonious variable subset. The mortality, COPD exacerbations, and comorbidity profile of the identified groups were examined. The findings were validated in an independent Intermountain cohort and in external cohorts from the United States Veterans Affairs (VA) and University of Chicago Medicine systems. Measurements and Main Results: The RP algorithm identified five LIVE Scores based on laboratory values: albumin, creatinine, chloride, potassium, and hemoglobin. The groups were characterized by increasing risk of mortality. The lowest risk, LIVE Score 5 had 8% 4-year mortality vs. 56% in the highest risk LIVE Score 1 (p < 0.001). These findings were validated in the VA cohort (n = 83,134), an expanded Intermountain cohort (n = 48,871) and in the University of Chicago system (n = 3,236). Higher mortality groups also had higher COPD exacerbation rates and comorbidity rates. Conclusions: In large clinical datasets across different organizations, the LIVE Score utilizes existing laboratory data for COPD patients, and may be used to stratify risk for mortality and COPD exacerbations

    Spirometry reference equations for central European populations from school age to old age.

    Get PDF
    Spirometry reference values are important for the interpretation of spirometry results. Reference values should be updated regularly, derived from a population as similar to the population for which they are to be used and span across all ages. Such spirometry reference equations are currently lacking for central European populations. To develop spirometry reference equations for central European populations between 8 and 90 years of age. We used data collected between January 1993 and December 2010 from a central European population. The data was modelled using "Generalized Additive Models for Location, Scale and Shape" (GAMLSS). The spirometry reference equations were derived from 118'891 individuals consisting of 60'624 (51%) females and 58'267 (49%) males. Altogether, there were 18'211 (15.3%) children under the age of 18 years. We developed spirometry reference equations for a central European population between 8 and 90 years of age that can be implemented in a wide range of clinical settings

    Effect of ozone on allergic airway inflammation

    No full text
    corecore