31 research outputs found

    Microstructural analysis of diffuse axonal injury after traumatic brain injury using diffusion-weighted Magnetic resonance imaging

    Get PDF
    Diffuse axonal injury (DAI) has been considered to be one of the main mechanisms leading to permanent disability in patients with traumatic brain injury (TBI) leading to disturbance in axonal function and neuronal damage. Conventional neuroimaging techniques such as computed tomography and magnetic resonance imaging (MRI) are useful in detection of macroscopic lesions. However, due to their lack of sensitivity, they are not sensitive enough to detect DAI. Diffusion-weighted (DW) MRI is a non-invasive imaging method that can be sensitive to subtle white matter (WM) alterations and it is capable of providing information about structural brain connectivity in vivo. The aim of the present research was to study microstructural WM abnormalities following TBI using DW-MRI and advanced analysis techniques e.g. high angular resolution diffusion imaging (HARDI). Patients with mild TBI (mTBI) and orthopedically injured (OI) patients that served as control subjects underwent brain imaging and clinical assessments during the TBICare study. Whole brain global and local WM abnormalities associated with DAI were investigated using diffusion tensor imaging analysis methods and probabilistic tractography. In addition, brain structural connectivity was evaluated following mTBI. Furthermore, the associations of WM alterations and structural network properties with the outcome were assessed. Patients with mTBI showed lower anisotropy and higher diffusivity measures at acute or sub-acute, and chronic stages of mTBI compared with controls. These WM alterations were susceptible to the average fiber orientation. Additionally, structural network connectivity was altered only locally and no differences were found between patients and controls in the global network properties. However, WM alterations and network metrics were significantly associated with the outcome. This study highlighted that novel advanced HARDI methods are promising tools to detect WM alterations already at the early stage after mTBI. Furthermore, we showed that disruptions in structural brain networks are associated with outcome, and suggest that network properties in the acute/subacute stage are promising imaging biomarkers for prognostic purposes.Tapaturmaiseen aivovammaan liittyvän diffuusin aksonivaurion hienorakenneanalyysi diffuusiopainotteisella magneettikuvauksella Diffuusi aksonivaurio on suurin syy pysyvään työkyvyttömyyteen traumaattisen aivovamman jälkeen, ja johtaa häiriöihin aksonien toiminnassa sekä hermostovaurioihin. Tyypilliset aivokuvantamistekniikat kuten tietokonetomografia ja magneettikuvantaminen (MRI) ovat hyödyllisiä makroskooppisten vaurioiden havaitsemisessa, mutta ne eivät ole riittävän herkkiä diffuusin aksonivaurion havaitsemiseen. Diffuusiopainotettu MRI on kajoamaton kuvantamismenetelmä, joka voi olla sensitiivinen hienovaraisillekin valkean aineen muutoksille ja se pystyy antamaan tietoa hermoratojen muodostamista rakenteellisista yhteyksistä in vivo. Tämän väitöstutkimuksen tavoite oli tutkia aivojen valkean aineen mikrorakenteellisia muutoksia traumaattisen aivovamman jälkeen käyttäen diffuusiopainotettua MRI:tä sekä edistyneitä analyysimenetelmiä. Potilaat, joilla oli todettu lievä aivovamma sekä verrokkeina toimineet ortopedisesti loukkaantuneet potilaat kuvattiin ja tutkittiin osana TBICare EU-hanketta. Paikallisia sekä koko aivojen valkean aineen mikrorakenteellisia ominaisuuksia tutkittiin käyttäen diffuusiotensorimenetelmää (DTI) sekä probabilistista traktografiaa. Lisäksi aivojen rakenteellista konnektiivisuutta tutkittiin lievän aivovamman jälkeen. Myös valkean aineen muutosten ja rakenteellisten aivoverkostojen ominaisuuksien suhdetta aivovamman jälkeiseen oirekuvaan tutkittiin. Aivovammapotilailla oli alentunut anisotropia ja korkeampi diffusiviteetti sekä akuutissa/subakuutissa vaiheessa että kroonisessa vaiheessa verrattuna verrokkeihin. Nämä valkean aineen muutokset riippuivat myös hermoratojen suunnista. Aivojen rakenteellinen konnektiivisuus oli poikkeava vain lokaalisti eikä koko verkostoja kuvaavissa globaleissa mittareissa havaittu muutoksia. Valkean aineen muutokset ja sekä globaalit että paikalliset verkostomittarit liittyivät kuitenkin selvästi aivovamman jälkeisiin oireisiin. Tämä tutkimus osoitti, että uudet diffuusiomagneettikuvien analyysimenetelmät ovat lupaavia työkaluja diffuusin aksonivaurion havaitsemiseen jo aikaisessa vaiheessa lievän traumaattisen aivovamman jälkeen. Lisäksi havaitsimme, että rakenteellisten aivoverkostojan ominaisuudet liittyivät aivovamman jälkeisiin oireisiin vahvasti ja voivat auttaa jo aikaisessa vaiheessa myöhemmän oirekuvan ennustamisessa

    Integrative Analysis of Circulating Metabolite Profiles and Magnetic Resonance Imaging Metrics in Patients with Traumatic Brain Injury

    Get PDF
    Recent evidence suggests that patients with traumatic brain injuries (TBIs) have a distinct circulating metabolic profile. However, it is unclear if this metabolomic profile corresponds to changes in brain morphology as observed by magnetic resonance imaging (MRI). The aim of this study was to explore how circulating serum metabolites, following TBI, relate to structural MRI (sMRI) findings. Serum samples were collected upon admission to the emergency department from patients suffering from acute TBI and metabolites were measured using mass spectrometry-based metabolomics. Most of these patients sustained a mild TBI. In the same patients, sMRIs were taken and volumetric data were extracted (138 metrics). From a pool of 203 eligible screened patients, 96 met the inclusion criteria for this study. Metabolites were summarized as eight clusters and sMRI data were reduced to 15 independent components (ICs). Partial correlation analysis showed that four metabolite clusters had significant associations with specific ICs, reflecting both the grey and white matter brain injury. Multiple machine learning approaches were then applied in order to investigate if circulating metabolites could distinguish between positive and negative sMRI findings. A logistic regression model was developed, comprised of two metabolic predictors (erythronic acid and myo-inositol), which, together with neurofilament light polypeptide (NF-L), discriminated positive and negative sMRI findings with an area under the curve of the receiver-operating characteristic of 0.85 (specificity = 0.89, sensitivity = 0.65). The results of this study show that metabolomic analysis of blood samples upon admission, either alone or in combination with protein biomarkers, can provide valuable information about the impact of TBI on brain structural changes

    Insights into disseminated MS brain pathology with multimodal diffusion tensor and PET imaging

    Get PDF
    Objective To evaluate in vivo the co-occurrence of microglial activation and microstructural white matter (WM) damage in the MS brain and to examine their association with clinical disability.Methods 18-kDa translocator protein (TSPO) brain PET imaging was performed for evaluation of microglial activation by using the radioligand [11C](R)-PK11195. TSPO binding was evaluated as the distribution volume ratio (DVR) from dynamic PET images. Diffusion tensor imaging (DTI) and conventional MRI (cMRI) were performed at the same time. Mean fractional anisotropy (FA) and mean (MD), axial, and radial (RD) diffusivities were calculated within the whole normal-appearing WM (NAWM) and segmented NAWM regions appearing normal in cMRI. Fifty-five patients with MS and 15 healthy controls (HCs) were examined.Results Microstructural damage was observed in the NAWM of the MS brain. DTI parameters of patients with MS were significantly altered in the NAWM compared with an age- and sex-matched HC group: mean FA was decreased, and MD and RD were increased. These structural abnormalities correlated with increased TSPO binding in the whole NAWM and in the temporal NAWM (p Conclusions Widespread structural disruption in the NAWM is linked to neuroinflammation, and both phenomena associate with clinical disability. Multimodal PET and DTI allow in vivo evaluation of widespread MS pathology not visible using cMRI.</div

    Admission Levels of Total Tau and β-Amyloid Isoforms 1–40 and 1–42 in Predicting the Outcome of Mild Traumatic Brain Injury

    Get PDF
    Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and β-amyloid isoforms 1-40 (Aβ40) and 1-42 (Aβ42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI). Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) ≥ 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, Aβ40, and Aβ42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6–12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE < 8) recovery. The Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was also used to assess mTBI-related symptoms. Predictive values of the biomarkers were analyzed independently, in panels and together with clinical parameters. Results: The admission levels of plasma T-tau, Aβ40, and Aβ42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, Aβ40, and Aβ42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman ρ = −0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, Aβ40, and Aβ42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of Aβ40 and Aβ42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman ρ = −0.288, p = 0.035). The levels of T-tau, Aβ40, and Aβ42 were not correlated with the RPCSQ scores. Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI

    Cerebral Microbleeds and Structural White Matter Integrity in Patients With Traumatic Brain Injury-A Diffusion Tensor Imaging Study

    Get PDF
    Diffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as traumatic alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. These WM alterations can be assessed using diffusion tensor imaging (DTI). Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury. It is poorly known how they associate with long-term white matter integrity. This study included 20 patients with TBI and CMBs, 34 patients with TBI without CMBs, and 11 controls with orthopedic injuries. DTI was used to assess microstructural WM alterations. CMBs were detected using susceptibility-weighted imaging (SWI) and graded according to their location in the WM and total lesion load was counted. Patients underwent SWI within 2 months after injury. DTI and clinical outcome assessment were performed at an average of eight months after injury. Outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The Glasgow Coma Scale (GCS) and length of post-traumatic amnesia (PTA) were used to assess clinical severity of the injury. We found that CMB grading and total lesion load were negatively associated with fractional anisotropy (FA) and positively associated with mean diffusivity (MD). Patients with TBI and CMBs had decreased FA and increased MD compared with patients with TBI without CMBs. CMBs were also associated with worse clinical outcome. When adjusting for the clinical severity of the injury, none of the mentioned associations were found. Thus, the difference in FA and MD is explained by patients with TBI and CMBs having more severe injuries. Our results suggest that CMBs are not associated with greater WM alterations when adjusting for the clinical severity of TBI. Thus, CMBs and WM alterations may not be strongly associated pathologies in TBI

    Trajectories of interleukin 10 and heart fatty acid-binding protein levels in traumatic brain injury patients with or without extracranial injuries

    Get PDF
    Background: Interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have gained interest as diagnostic biomarkers of traumatic brain injury (TBI), but factors affecting their blood levels in patients with moderate-to-severe TBI are largely unknown. Objective: To investigate the trajectories of IL-10 and H-FABP between TBI patients with and without extracranial injuries (ECI); to investigate if there is a correlation between the levels of IL-10 and H-FABP with the levels of inflammation/infection markers C-reactive protein (CRP) and leukocytes; and to investigate if there is a correlation between the admission level of H-FABP with admission levels of cardiac injury markers, troponin (TnT), creatine kinase (CK), and creatine kinase MB isoenzyme mass (CK-MBm). Materials and methods: The admission levels of IL-10, H-FABP, CRP, and leukocytes were measured within 24 h post-TBI and on days 1, 2, 3, and 7 after TBI. The admission levels of TnT, CK, and CK-MBm were measured within 24 h post-TBI. Results: There was a significant difference in the concentration of H-FABP between TBI patients with and without ECI on day 0 (48.2 ± 20.5 and 12.4 ± 14.7 ng/ml, p = 0.02, respectively). There was no significant difference in the levels of IL-10 between these groups at any timepoints. There was a statistically significant positive correlation between IL-10 and CRP on days 2 (R = 0.43, p < 0.01) and 7 (R = 0.46, p = 0.03) after injury, and a negative correlation between H-FABP and CRP on day 0 (R = -0.45, p = 0.01). The levels of IL-10 or H-FABP did not correlate with leukocyte counts at any timepoint. The admission levels of H-FABP correlated with CK (R = 0.70, p < 0.001) and CK-MBm (R = 0.61, p < 0.001), but not with TnT. Conclusion: Inflammatory reactions during the early days after a TBI do not significantly confound the use of IL-10 and H-FABP as TBI biomarkers. Extracranial injuries and cardiac sources may influence the levels of H-FABP in patients with moderate-to-severe TBI.publishedVersionPeer reviewe

    Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury

    Get PDF
    Background: There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting.Methods: Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed.Results: Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls.Conclusions: S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.</p

    Admission Levels of Total Tau and β-Amyloid Isoforms 1–40 and 1–42 in Predicting the Outcome of Mild Traumatic Brain Injury

    Get PDF
    Background: The purpose of this study was to investigate if admission levels of total tau (T-tau) and beta-amyloid isoforms 1-40 (A beta 40) and 1-42 (A beta 42) could predict clinical outcome in patients with mild traumatic brain injury (mTBI).Methods: A total of 105 patients with mTBI [Glasgow Coma Scale (GCS) >= 13] recruited in Turku University Hospital, Turku, Finland were included in this study. Blood samples were drawn within 24 h of admission for analysis of plasma T-tau, A beta 40, and A beta 42. Patients were divided into computed tomography (CT)-positive and CT-negative groups. The outcome was assessed 6-12 months after the injury using the Extended Glasgow Outcome Scale (GOSE). Outcomes were defined as complete (GOSE 8) or incomplete (GOSE Results: The admission levels of plasma T-tau, A beta 40, and A beta 42 were not significantly different between patients with complete and incomplete recovery. The levels of T-tau, A beta 40, and A beta 42 could poorly predict complete recovery, with areas under the receiver operating characteristic curve 0.56, 0.52, and 0.54, respectively. For the whole cohort, there was a significant negative correlation between the levels of T-tau and ordinal GOSE score (Spearman rho = -0.231, p = 0.018). In a multivariate logistic regression model including age, GCS, duration of posttraumatic amnesia, Injury Severity Score (ISS), time from injury to sampling, and CT findings, none of the biomarkers could predict complete recovery independently or together with the other two biomarkers. Plasma levels of T-tau, A beta 40, and A beta 42 did not significantly differ between the outcome groups either within the CT-positive or CT-negative subgroups. Levels of A beta 40 and A beta 42 did not significantly correlate with outcome, but in the CT-positive subgroup, the levels of T-tau significantly correlated with ordinal GOSE score (Spearman rho = -0.288, p = 0.035). The levels of T-tau, A beta 40, and A beta 42 were not correlated with the RPCSQ scores.Conclusions: The early levels of T-tau are correlated with the outcome in patients with mTBI, but none of the biomarkers either alone or in any combinations could predict complete recovery in patients with mTBI.</div

    Trajectories of interleukin 10 and heart fatty acid-binding protein levels in traumatic brain injury patients with or without extracranial injuries

    Get PDF
    BackgroundInterleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have gained interest as diagnostic biomarkers of traumatic brain injury (TBI), but factors affecting their blood levels in patients with moderate-to-severe TBI are largely unknown.ObjectiveTo investigate the trajectories of IL-10 and H-FABP between TBI patients with and without extracranial injuries (ECI); to investigate if there is a correlation between the levels of IL-10 and H-FABP with the levels of inflammation/infection markers C-reactive protein (CRP) and leukocytes; and to investigate if there is a correlation between the admission level of H-FABP with admission levels of cardiac injury markers, troponin (TnT), creatine kinase (CK), and creatine kinase MB isoenzyme mass (CK-MBm).Materials and methodsThe admission levels of IL-10, H-FABP, CRP, and leukocytes were measured within 24 h post-TBI and on days 1, 2, 3, and 7 after TBI. The admission levels of TnT, CK, and CK-MBm were measured within 24 h post-TBI.ResultsThere was a significant difference in the concentration of H-FABP between TBI patients with and without ECI on day 0 (48.2 ± 20.5 and 12.4 ± 14.7 ng/ml, p = 0.02, respectively). There was no significant difference in the levels of IL-10 between these groups at any timepoints. There was a statistically significant positive correlation between IL-10 and CRP on days 2 (R = 0.43, p &lt; 0.01) and 7 (R = 0.46, p = 0.03) after injury, and a negative correlation between H-FABP and CRP on day 0 (R = -0.45, p = 0.01). The levels of IL-10 or H-FABP did not correlate with leukocyte counts at any timepoint. The admission levels of H-FABP correlated with CK (R = 0.70, p &lt; 0.001) and CK-MBm (R = 0.61, p &lt; 0.001), but not with TnT.ConclusionInflammatory reactions during the early days after a TBI do not significantly confound the use of IL-10 and H-FABP as TBI biomarkers. Extracranial injuries and cardiac sources may influence the levels of H-FABP in patients with moderate-to-severe TBI
    corecore