1,872 research outputs found

    High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity

    Full text link
    We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.Comment: 8 pages, 4 figure

    Gaussian entanglement distribution with gigahertz bandwidth

    Full text link
    The distribution of entanglement with Gaussian statistic can be used to generate a mathematically-proven secure key for quantum cryptography. The distributed secret key rate is limited by the {entanglement strength, the entanglement bandwidth and the bandwidth of the photo-electric detectors}. The development of a source for strongly, bi-partite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25\,GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300\,MHz to about 2.8 at 1.2\,GHz extending further to about 3.1 at 1.48\,GHz. In the experiment we used two 2.6\,mm long monolithic periodically poled potassium titanyl phosphate (PPKTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550\,nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.Comment: 5 pages, 3 figures, published in Optics Letter

    The squeezed light source for the advanced virgo detector in the observation run O3

    Get PDF
    From 1 April 2019 to 27 March 2020, the Advanced Virgo detector, together with the two Advanced LIGO detectors, conducted the third joint scientific observation run O3, aiming for further detections of gravitational wave signals from astrophysical sources. One of the upgrades to the Virgo detector for O3 was the implementation of the squeezed light technology to improve the detector sensitivity beyond its classical quantum shot noise limit. In this paper, we present a detailed description of the optical setup and performance of the employed squeezed light source. The squeezer was constructed as an independent, stand-alone sub-system operated in air. The generated squeezed states are tailored to exhibit high purity at intermediate squeezing levels in order to significantly reduce the interferometer shot noise level while keeping the correlated enhancement of quantum radiation pressure noise just below the actual remaining technical noise in the Advanced Virgo detector

    Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

    Full text link
    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope

    Observation of squeezed states with strong photon number oscillations

    Get PDF
    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, e.g. gravitational wave detection, as well as in the field of quantum information, e.g. for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of the strongest squeezing to date of 11.5 dB, together with unprecedented high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons, and the existence of strong photon number oscillations.Comment: 7 pages, 6 figure

    Squeezed light at 1064 nm and 1550 nm with a nonclassical noise suppression beyond 10 dB

    Get PDF
    [no abstract

    Observation of squeezed light with 10dB quantum noise reduction

    Full text link
    Squeezing of light's quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a non-classical manifestation of light with great potential in high-precision quantum measurements, for example in the detection of gravitational waves. Equally promising applications have been proposed in quantum communication. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light's quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.Comment: 10 pages, 4 figure

    Compact Multifringe Interferometry with Subpicometer Precision

    Get PDF
    Deep-frequency-modulation interferometry combines optical minimalism with multifringe readout. However, precision is key for applications such as optical gradiometers for satellite geodesy or as dimensional sensors for ground-based gravity experiments. We present a single-component interferometer smaller than a cubic inch. Two of these are compared to each other to demonstrate tilt and displacement measurements with a precision of less than 20 nrad/Hz and 1 pm/Hz at frequencies below 1 Hz
    corecore