108 research outputs found

    Imaging stray magnetic field of individual ferromagnetic nanotubes

    Get PDF
    We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, i.e.\ configurations with vortex end domains or -- in the case of a sufficiently short FNT -- with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized mangetization configurations influence the measured stray-field patterns.Comment: 14 pages, 4 figure

    Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes

    Get PDF
    The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify the entry of these vortices as a function of applied magnetic field and show that they mark the nucleation of magnetization reversal. We find that the entry field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end vortex formation enabled by our findings is promising for the production of FNTs with tailored reversal properties.Comment: 20 pages, 13 figure

    Imaging magnetic vortex configurations in ferromagnetic nanotubes

    Get PDF
    We image the remnant magnetization configurations of CoFeB and permalloy nanotubes (NTs) using x-ray magnetic circular dichroism photo-emission electron microscopy. The images provide direct evidence for flux-closure configurations, including a global vortex state, in which magnetization points circumferentially around the NT axis. Furthermore, micromagnetic simulations predict and measurements confirm that vortex states can be programmed as the equilibrium remnant magnetization configurations by reducing the NT aspect ratio.Comment: 14 pages, 4 figures, link to supplementary informatio

    An ensemble of structures of Burkholderia pseudomallei 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

    Get PDF
    An ensemble of crystal structures are reported for 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase from B. pseudomallei. The structures include two vanadate complexes, revealing the structure of a close analogue of the transition state for phosphate transfer

    Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach

    Get PDF
    In cell-based drug development, researchers attempt to create drugs that kill a pathogen without necessarily understanding the details of how the drugs work. In contrast, target-based drug development entails the search for compounds that act on a specific intracellular target—often a protein known or suspected to be required for survival of the pathogen. The latter approach to drug development has been facilitated greatly by the sequencing of many pathogen genomes and the incorporation of genome data into user-friendly databases. The present paper shows how the database TDRtargets.org can identify proteins that might be considered good drug targets for diseases such as African sleeping sickness, Chagas disease, parasitic worm infections, tuberculosis, and malaria. These proteins may score highly in searches of the database because they are dissimilar to human proteins, are structurally similar to other “druggable” proteins, have functions that are easy to measure, and/or fulfill other criteria. Researchers can use the lists of high-scoring proteins as a basis for deciding which potential drug targets to pursue experimentally

    Inactivation of Staphylococcal Phenol Soluble Modulins by Serum Lipoprotein Particles

    Get PDF
    Staphylococcus aureus virulence has been associated with the production of phenol soluble modulins (PSM). PSM are known to activate, attract and lyse neutrophils. However, the functional characterizations were generally performed in the absence of human serum. Here, we demonstrate that human serum can inhibit all the previously-described activities of PSM. We observed that serum can fully block both the cell lysis and FPR2 activation of neutrophils. We show a direct interaction between PSM and serum lipoproteins in human serum and whole blood. Subsequent analysis using purified high, low, and very low density lipoproteins (HDL, LDL, and VLDL) revealed that they indeed neutralize PSM. The lipoprotein HDL showed highest binding and antagonizing capacity for PSM. Furthermore, we show potential intracellular production of PSM by S. aureus upon phagocytosis by neutrophils, which opens a new area for exploration of the intracellular lytic capacity of PSM. Collectively, our data show that in a serum environment the function of PSM as important extracellular toxins should be reconsidered

    Functional Amyloids Composed of Phenol Soluble Modulins Stabilize Staphylococcus aureus Biofilms

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen that colonizes the skin and mucosal surfaces of mammals. Persistent staphylococcal infections often involve surface-associated communities called biofilms. Here we report the discovery of a novel extracellular fibril structure that promotes S. aureus biofilm integrity. Biochemical and genetic analysis has revealed that these fibers have amyloid-like properties and consist of small peptides called phenol soluble modulins (PSMs). Mutants unable to produce PSMs were susceptible to biofilm disassembly by matrix degrading enzymes and mechanical stress. Previous work has associated PSMs with biofilm disassembly, and we present data showing that soluble PSM peptides disperse biofilms while polymerized peptides do not. This work suggests the PSMs' aggregation into amyloid fibers modulates their biological activity and role in biofilms
    corecore