863 research outputs found
Mononuclear Cu(II) complexes of novel salicylidene Schiff bases: synthesis and mesogenic properties
Two new Schiff base ligands 1 and 2 (where 1 = 4-(2-hydroxybenzilidenamino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate, 2 = 4-(4-(decyloxy)-2-hydroxybenziliden amino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate) and their copper (Cu)(II) complexes have been synthesised and characterised. The derivatives were fully characterised structurally, and their mesomorphic behaviour was investigated by polarised optical microscopyand differential scanning calorimetry. The structure of Cu(II) complex having 1 as ligand (3) was determined by X-ray diffraction. The Schiff base ligands exhibit enantiotropic nematic phases, the Cu(II) complex 4 shows monotropic nematic phase behaviour, while compound 3 does not show mesomorphism
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
Structural and superconducting properties of MgBBe
We prepared MgBBe (, 0.2, 0.3, 0.4, and 0.6) samples where
B is substituted with Be. MgB structure is maintained up to .
In-plane and inter-plane lattice constants were found to decrease and increase,
respectively. Superconducting transition temperature decreases with
. We found that the decrease is correlated with in-plane contraction
but is insensitive to carrier doping, which is consistent with other
substitution studies such as MgAlB and MgBC.
Implication of this work is discussed in terms of the 2D nature of -band.Comment: 3 pages,4 figures, to be published in Phys. Rev.
Robust ab initio calculation of condensed matter: transparent convergence through semicardinal multiresolution analysis
We present the first wavelet-based all-electron density-functional
calculations to include gradient corrections and the first in a solid. Direct
comparison shows this approach to be unique in providing systematic
``transparent'' convergence, convergence with a priori prediction of errors, to
beyond chemical (millihartree) accuracy. The method is ideal for exploration of
materials under novel conditions where there is little experience with how
traditional methods perform and for the development and use of chemically
accurate density functionals, which demand reliable access to such precision.Comment: 4 pages, 3 figures, 4 tables. Submitted to Phys. Rev. Lett. (updated
to include GGA
Ab Initio Calculation of Spin Gap Behavior in CaV4O9
Second neighbor dominated exchange coupling in CaV4O9 has been obtained from
ab initio density functional (DF) calculations. A DF-based self-consistent
atomic deformation model reveals that the nearest neighbor coupling is small
due to strong cancellation among the various superexchange processes. Exact
diagonalization of the predicted Heisenberg model yields spin-gap behavior in
good agreement with experiment. The model is refined by fitting to the
experimental susceptibility. The resulting model agrees very well with the
experimental susceptibility and triplet dispersion.Comment: 4 pages; 3 ps figures included in text; Revte
Study of intrinsic spin and orbital Hall effects in Pt based on a (6s, 6p, 5d) tight-binding model
We study the origin of the intrinsic spin Hall conductivity (SHC) and the
d-orbital Hall conductivity (OHC) in Pt based on a multiorbital tight-binding
model with spin-orbit interaction. We find that the SHC reaches 1000
\hbar/e\Omega cm when the resistivity \rho is smaller than ~10 \mu\Omega cm,
whereas it decreases to 300 \hbar/e\Omega cm when \rho ~ 100 \mu\Omega cm. In
addition, the OHC is still larger than the SHC. The origin of huge SHE and OHE
in Pt is the large ``effective magnetic flux'' that is induced by the
interorbital transition between d_{xy}- and d_{x2-y2}-orbitals with the aid of
the strong spin-orbit interaction.Comment: 5 page
- …
