34 research outputs found

    Staphylococcus aureus enterotoxins induce IL-8 secretion by human nasal epithelial cells

    Get PDF
    BACKGROUND: Staphylococcus aureus produces a set of proteins which act both as superantigens and toxins. Although their mode of action as superantigens is well understood, little is known about their effects on airway epithelial cells. METHODS: To investigate this problem, primary nasal epithelial cells derived from normal and asthmatic subjects were stimulated with staphylococcal enterotoxin A and B (SEA and SEB) and secreted (supernatants) and cell-associated (cell lysates) IL-8, TNF-α, RANTES and eotaxin were determined by specific ELISAs. RESULTS: Non-toxic concentrations of SEA and SEB (0.01 μg/ml and 1.0 μg/ml) induced IL-8 secretion after 24 h of culture. Pre-treatment of the cells with IFN-γ (50 IU/ml) resulted in a further increase of IL-8 secretion. In cells from healthy donors pretreated with IFN-γ, SEA at 1.0 μg/ml induced release of 1009 pg/ml IL-8 (733.0–1216 pg/ml, median (range)) while in cells from asthmatic donors the same treatment induced significantly higher IL-8 secretion – 1550 pg/ml (1168.0–2000.0 pg/ml p = 0.04). Normal cells pre-treated with IFN-γ and then cultured with SEB at 1.0 μg/ml released 904.6 pg/ml IL-8 (666.5–1169.0 pg/ml). Cells from asthmatics treated in the same way produced significantly higher amounts of IL-8 – 1665.0 pg/ml (1168.0–2000.0 pg/ml, p = 0.01). Blocking antibodies to MHC class II molecules added to cultures stimulated with SEA and SEB, reduced IL-8 secretion by about 40% in IFN-γ unstimulated cultures and 75% in IFN-γ stimulated cultures. No secretion of TNF-α, RANTES and eotaxin was noted. CONCLUSION: Staphylococcal enterotoxins may have a role in the pathogenesis of asthma

    Dual TNFα-induced effects on NRF2 mediated antioxidant defence in astrocyte-rich cultures: role of protein kinase activation

    Get PDF
    Tumor necrosis factor-α (TNFα) is a pleiotropic molecule that can have both protective and detrimental effects in neurodegeneration. Here we have investigated the temporal effects of TNFα on the inducible Nrf2 system in astrocyte-rich cultures by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the catalytic and modulatory subunit of γGCL (γGCL-C and γGCL-M respectively). Astrocyte-rich cultures were exposed for 24 or 72 h to different concentrations of TNFα. Acute exposure (24 h) of astrocyte-rich cultures to 10 ng/mL of TNFα increased GSH, γGCL activity, the protein levels of γGCL-M, γGCL-C and Nrf2 in parallel with decreased levels of Keap1. Antioxidant responsive element (ARE)-mediated transcription was blocked by inhibitors of ERK1/2, JNK and Akt whereas inactivation of p38 and GSK3β further enhanced transcription. In contrast treatment with TNFα for 72 h decreased components of the Nrf2 system in parallel with an increase of Keap1. Stimulation of the Nrf2 system by tBHQ was intact after 24 h but blocked after 72 h treatment with TNFα. This down-regulation after 72 h correlated with activation of p38 MAPK and GSK3β, since inhibition of these signalling pathways reversed this effect. The upregulation of the Nrf2 system by TNFα (24 h treatment) protected the cells from oxidative stress through elevated γGCL activity whereas the down-regulation (72 h treatment) caused pronounced oxidative toxicity. One of the important implications of the results is that in a situation where Nrf2 is decreased, such as in Alzheimer’s disease, the effect of TNFα is detrimental.Fil: Correa, Fernando Gabriel. University Goteborg; Suecia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mallard, Carina. University Goteborg; SueciaFil: Nilsson, Michael. University Goteborg; SueciaFil: Sandberg, Mats. University Goteborg; Sueci
    corecore