16 research outputs found
Wild Type and Gain of Function Mutant TP53 can Regulate the Sensitivity of Pancreatic Cancer Cells to Chemotherapeutic Drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 Pathway Inhibitors, Nutraceuticals and Alter Metabolic Properties
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC
Engineering an improved crystal contact across a solvent-mediated interface of human fibroblast growth factor 1
A solvent-mediated crystal contact in fibroblast growth factor-1 was subjected to mutagenesis to improve crystal growth. The results indicate that improved growth was achieved upon elimination of the solvent-mediated interface and introduction of direct crystal contacts
Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism
Objective: Macrophages control tissue homeostasis and inflammation by sensing and responding to environmental cues. However, the metabolic adaptation of macrophages to oxidative tissue damage and its translation into inflammatory mechanisms remains enigmatic. Methods: Here we identify the critical regulatory pathways that are induced by endogenous oxidation-derived DAMPs (oxidized phospholipids, OxPL) in vitro, leading to formation of a unique redox-regulatory metabolic phenotype (Mox), which is strikingly different from conventional classical or alternative macrophage activation. Results: Unexpectedly, metabolomic analyses demonstrated that Mox heavily rely on glucose metabolism and the pentose phosphate pathway (PPP) to support GSH production and Nrf2-dependent antioxidant gene expression. While the metabolic adaptation of macrophages to OxPL involved transient suppression of aerobic glycolysis, it also led to upregulation of inflammatory gene expression. In contrast to classically activated (M1) macrophages, Hif1α mediated expression of OxPL-induced Glut1 and VEGF but was dispensable for Il1β expression. Mechanistically, we show that OxPL suppress mitochondrial respiration via TLR2-dependent ceramide production, redirecting TCA metabolites to GSH synthesis. Finally, we identify spleen tyrosine kinase (Syk) as a critical downstream signaling mediator that translates OxPL-induced effects into ceramide production and inflammatory gene regulation. Conclusions: Together, these data demonstrate the metabolic and bioenergetic requirements that enable macrophages to translate tissue oxidation status into either antioxidant or inflammatory responses via sensing OxPL. Targeting dysregulated redox homeostasis in macrophages could therefore lead to novel therapies to treat chronic inflammation. Keywords: Oxidized phospholipids, Spleen tyrosine kinase, Macrophages, Bioenergetics, Cellular metabolism, Redox homeostasis, Inflammation, Ceramide
Recommended from our members
Resolvin D1 decreases abdominal aortic aneurysm formation by inhibiting NETosis in a mouse model
ObjectiveResolvins have been shown to attenuate inflammation, whereas NETosis, the process of neutrophils releasing neutrophil extracellular traps (NETs), produces increased inflammation. It is hypothesized that treatment of animals with resolvin D1 (RvD1) would reduce abdominal aortic aneurysm (AAA) formation by inhibiting NETosis.MethodsWild-type 8- to 12-week-old C57BL/6 male mice (n = 47) and apolipoprotein E-deficient (ApoE-/-) mice (n = 20) were used in two models to demonstrate the effects of RvD1 on AAA growth. In the topical elastase AAA model, wild-type mice were divided into three groups: a deactivated elastase control group, in which sham surgery was performed using deactivated elastase and mice were intravenously injected with phosphate-buffered saline (PBS) once a day until harvest; an elastase group, in which active elastase was used to induce AAA and mice were injected with PBS daily until harvest; and an RvD1-treated group, in which AAA was induced and mice were injected with RvD1 daily until harvest. In the angiotensin II (Ang II)-induced AAA model, ApoE-/- mice were fed a high-fat diet and implanted with osmotic infusion pumps containing Ang II (1000 ng/kg/min). The Ang II model was divided into two groups: an Ang II control group, in which Ang II was delivered and mice were injected with PBS daily until harvest; and an RvD1-treated group, in which Ang II was delivered and mice were injected with RvD1 daily until harvest. On postoperative day 3, day 14, or day 28, aortic and blood samples were collected for Western blot, histology, cytokine array, enzyme-linked immunosorbent assay, and gelatin zymography after aortic diameter measurement.ResultsThe day 14 RvD1-treated group demonstrated 42% reduced AAA diameter compared with the elastase group (P < .001). On postoperative day 3, the RvD1-treated group showed decreased levels of NETosis markers citrullinated histone H3 (P = .04) and neutrophil elastase (P = .002) compared with the elastase group. Among important cytokines involved in AAA formation, interleukin (IL) 1β was downregulated (P = .02) whereas IL-10, a protective cytokine, was upregulated (P = .01) in the RvD1-treated group. Active matrix metalloproteinase 2 also decreased in the RvD1-treated group (P = .03). The RvD1-treated group in the Ang II AAA model, a second model, demonstrated reduced AAA diameter compared with the Ang II control group on day 28 (P < .046). The RvD1-treated group showed decreased levels of citrullinated histone H3 on day 3 (P = .002). Cytokines interferon γ, IL-1β, C-X-C motif chemokine ligand 10, monocyte chemotactic protein 1, and regulated on activation, normal T cell expressed and secreted (RANTES) were all decreased on day 28 (P < .05).ConclusionsRvD1-mediated inhibition of NETosis may represent a future medical treatment for the attenuation of AAA growth
Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes
Objective: Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis.
Methods: We assessed Panx1 functionality in cultured 3T3-L1 adipocytes and in adipocytes isolated from murine white adipose tissue by measuring ATP release in response to known activators of Panx1 channels. Glucose uptake in cultured 3T3-L1 adipocytes was measured in the presence of Panx1 pharmacologic inhibitors and in adipocytes isolated from white adipose tissue from wildtype (WT) or adipocyte-specific Panx1 knockout (AdipPanx1 KO) mice generated in our laboratory. We performed in vivo glucose uptake studies in chow fed WT and AdipPanx1 KO mice and assessed insulin resistance in WT and AdipPanx1 KO mice fed a high fat diet for 12 weeks. Panx1 channel function was assessed in response to insulin by performing electrophysiologic recordings in a heterologous expression system. Finally, we measured Panx1 mRNA in human visceral adipose tissue samples by qRT-PCR and compared expression levels with glucose levels and HOMA-IR measurements in patients.
Results: Our data show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. Further, we identify insulin as a novel activator of Panx1 channels. In obese humans Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance.
Conclusions: We show that Panx1 channel activity regulates insulin-stimulated glucose uptake in adipocytes and thus contributes to control of metabolic homeostasis
GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals
none17siGlycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3β in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3β. Transfection of MIA-PaCa-2 cells with WT-GSK-3β increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3β often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3β and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3β reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3β decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3β increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3β can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.noneS.L. Abrams, S.M. Akula, A.K Meher, L. S. Steelman, A. Gizak, P. Duda, D. Rakus, A.M. Martelli, S. Ratti, L. Cocco, G. Montalto, M. Cervello, P. Ruvolo, M. Libra, L. Falzone, S. Candido, J.A. McCubrey.S.L. Abrams, S.M. Akula, A.K Meher, L. S. Steelman, A. Gizak, P. Duda, D. Rakus, A.M. Martelli, S. Ratti, L. Cocco, G. Montalto, M. Cervello, P. Ruvolo, M. Libra, L. Falzone, S. Candido, J.A. McCubrey