392 research outputs found

    Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

    Full text link
    We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems

    Approximation Results for Preemptive Stochastic Online Scheduling

    Get PDF
    We present first constant performance guarantees for preemptive stochastic scheduling to minimize the sum of weighted completion times. For scheduling jobs with release dates on identical parallel machines we derive policies with a guaranteed performance ratio of 2 which matches the currently best known result for the corresponding deterministic online problem. Our policies apply to the recently introduced stochastic online scheduling model inwhich jobs arrive online over time. In contrast to the previously considered nonpreemptivesetting, our preemptive policies extensively utilize information on processing time distributions other than the first (and second) moments. In order to derive our results we introduce a new nontrivial lower bound on the expected value of an unknown optimal policy that we derive from an optimal policy for the basic problem on a single machine without release dates. This problem is known to be solved optimally by a Gittins index priority rule. This priority index also inspires the design of our policies.computer science applications;

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    Packing a Knapsack of Unknown Capacity

    Get PDF
    We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We show that there is always a policy that packs a value within factor 2 of the optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a factor equal to the golden ratio. Both factors are shown to be best possible. In fact, we obtain the above factors using packing policies that are universal in the sense that they fix a particular order of the items and try to pack the items in this order, independent of the observations made while packing. We give efficient algorithms computing these policies. On the other hand, we show that, for any alpha>1, the problem of deciding whether a given universal policy achieves a factor of alpha is coNP-complete. If alpha is part of the input, the same problem is shown to be coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for given alpha, whether a set of items admits a universal policy with factor alpha, even if all items have unit densities
    corecore