392 research outputs found
Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model
We consider online scheduling on multiple machines for jobs arriving
one-by-one with the objective of minimizing the makespan. For any number of
identical parallel or uniformly related machines, we provide a
competitive-ratio approximation scheme that computes an online algorithm whose
competitive ratio is arbitrarily close to the best possible competitive ratio.
We also determine this value up to any desired accuracy. This is the first
application of competitive-ratio approximation schemes in the online-list
model. The result proves the applicability of the concept in different online
models. We expect that it fosters further research on other online problems
Approximation Results for Preemptive Stochastic Online Scheduling
We present first constant performance guarantees for preemptive stochastic scheduling to minimize the sum of weighted completion times. For scheduling jobs with release dates on identical parallel machines we derive policies with a guaranteed performance ratio of 2 which matches the currently best known result for the corresponding deterministic online problem. Our policies apply to the recently introduced stochastic online scheduling model inwhich jobs arrive online over time. In contrast to the previously considered nonpreemptivesetting, our preemptive policies extensively utilize information on processing time distributions other than the first (and second) moments. In order to derive our results we introduce a new nontrivial lower bound on the expected value of an unknown optimal policy that we derive from an optimal policy for the basic problem on a single machine without release dates. This problem is known to be solved optimally by a Gittins index priority rule. This priority index also inspires the design of our policies.computer science applications;
New Results on Online Resource Minimization
We consider the online resource minimization problem in which jobs with hard
deadlines arrive online over time at their release dates. The task is to
determine a feasible schedule on a minimum number of machines. We rigorously
study this problem and derive various algorithms with small constant
competitive ratios for interesting restricted problem variants. As the most
important special case, we consider scheduling jobs with agreeable deadlines.
We provide the first constant ratio competitive algorithm for the
non-preemptive setting, which is of particular interest with regard to the
known strong lower bound of n for the general problem. For the preemptive
setting, we show that the natural algorithm LLF achieves a constant ratio for
agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)).
We also give an O(log n)-competitive algorithm for the general preemptive
problem, which improves upon the known O(p_max/p_min)-competitive algorithm.
Our algorithm maintains a dynamic partition of the job set into loose and tight
jobs and schedules each (temporal) subset individually on separate sets of
machines. The key is a characterization of how the decrease in the relative
laxity of jobs influences the optimum number of machines. To achieve this we
derive a compact expression of the optimum value, which might be of independent
interest. We complement the general algorithmic result by showing lower bounds
that rule out that other known algorithms may yield a similar performance
guarantee
Packing a Knapsack of Unknown Capacity
We study the problem of packing a knapsack without knowing its capacity.
Whenever we attempt to pack an item that does not fit, the item is discarded;
if the item fits, we have to include it in the packing. We show that there is
always a policy that packs a value within factor 2 of the optimum packing,
irrespective of the actual capacity. If all items have unit density, we achieve
a factor equal to the golden ratio. Both factors are shown to be best possible.
In fact, we obtain the above factors using packing policies that are universal
in the sense that they fix a particular order of the items and try to pack the
items in this order, independent of the observations made while packing. We
give efficient algorithms computing these policies. On the other hand, we show
that, for any alpha>1, the problem of deciding whether a given universal policy
achieves a factor of alpha is coNP-complete. If alpha is part of the input, the
same problem is shown to be coNP-complete for items with unit densities.
Finally, we show that it is coNP-hard to decide, for given alpha, whether a set
of items admits a universal policy with factor alpha, even if all items have
unit densities
- …
