
Nicole Megow, Tjark Vredeveld

Approximation Results for Preemptive Stochastic
Online Scheduling

RM/06/053

JEL code : C61

Maastricht research school of Economics
of TEchnology and ORganizations

Universiteit Maastricht
Faculty of Economics and Business Administration
P.O. Box 616
NL - 6200 MD Maastricht

phone : ++31 43 388 3830
fax : ++31 43 388 4873

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6942039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approximation Results for Preemptive Stochastic Online
Scheduling

Nicole Megow1? and Tjark Vredeveld2??

1 Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin,
Germany. E-mail: nmegow@math.tu-berlin.de

2 Maastricht University, Department of Quantitative Economics, P.O. Box 616,
6200 MD Maastricht, The Netherlands. E-mail: t.vredeveld@ke.unimaas.nl

Abstract. We present first constant performance guarantees for preemptive stochastic
scheduling to minimize the sum of weighted completion times. For scheduling jobs with
release dates on identical parallel machines we derive policies with a guaranteed perfor-
mance ratio of 2 which matches the currently best known result for the corresponding
deterministic online problem.
Our policies apply to the recently introduced stochastic online scheduling model in
which jobs arrive online over time. In contrast to the previously considered nonpreemp-
tive setting, our preemptive policies extensively utilize information on processing time
distributions other than the first (and second) moments. In order to derive our results
we introduce a new nontrivial lower bound on the expected value of an unknown optimal
policy that we derive from an optimal policy for the basic problem on a single machine
without release dates. This problem is known to be solved optimally by a Gittins index
priority rule. This priority index also inspires the design of our policies.

1 Introduction

Stochastic scheduling problems have attracted researchers for about four decades, see e.g. [22].
A full range of articles concerns criteria that guarantee the optimality of simple policies for
special scheduling problems. Only recently research interest has also focused on approximative
policies [20, 29, 17, 24, 6] for nonpreemptive scheduling. We are not aware of any approxima-
tion results for preemptive problems. And previous approaches, based on linear programming
relaxations, do not seem to carry over to the preemptive setting. In this paper, we give first ap-
proximation results for preemptive policies for stochastic scheduling to minimize the weighted
sum of completion times. We prove an approximation guarantee of 2 even in the recently in-
troduced more general model of stochastic online scheduling [17, 4]. This guarantee matches
exactly the currently best known approximation result for the deterministic online version of
this problem [16].

Problem definition. Let J = {1, 2, . . . , n} be a set of jobs which must be scheduled on m
identical parallel machines. Each of the machines can process at most one job at a time, and
any job can be processed by no more than one machine at a time. Each job j has associated
a positive weight wj and an individual release date rj ≥ 0 before which it is not available for

? Supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin.
?? Research partially supported by METEOR, the Maastricht research school of Economics of Tech-

nology and Organizations.

2 Megow and Vredeveld

processing. We allow preemption which means that the processing of a job may be interrupted
and resumed later on the same or another machine.

The stochastic component in the model we consider is the uncertainty about processing
times. Any job j must be processed for P j units of time, where P j is a random variable.
By E [P j] we denote the expected value of the processing time of job j and by pj a particular
realization of P j . We assume that all random variables of processing times are stochastically
independent and follow discrete probability distributions. With the latter restriction and a
standard scaling argument, we may assume w.l.o.g. that P j attains integral values in the
set Ωj ⊆ {1, 2, . . . ,Mj} and that all release dates are integral. The sample space of all processing
times is denoted by Ω = Ω1 × · · · ×Ωn.

The objective is to schedule the processing of all jobs so as to minimize the total weighted
completion time of the jobs,

∑
j∈J wjCj , in expectation, where Cj denotes the completion time

of job j. Adopting the well-known three-field classification scheme by Graham et al. [9], we
denote the problem by P | rj , pmtn |E [

∑
wjCj].

The solution of a stochastic scheduling problem is not a simple schedule, but a so-called
scheduling policy. We follow the notion of scheduling policies as proposed by Möhring, Rader-
macher, and Weiss [18, 19]. Roughly spoken, a scheduling policy makes scheduling decisions at
certain decision time points t, and these decisions are based on information on the observed
past up to time t, as well as the a priori knowledge of the input data of the problem. The policy,
however, must not anticipate information about the future, such as the actual realizations pj

of the processing times of the jobs that have not yet been completed by time t.
Additionally, we will restrict ourselves to so-called online policies, which learn about the

existence and the characteristics of a job j only at its individual release date rj . This means for
an online policy that it must not anticipate the arrival of a job at any time earlier than its release
date. At this point in time, the job with the probability distribution of its processing time and
the weight are revealed. Thus, our policies are required to be online and non-anticipatory.
However, an optimal policy can be offline as long as it is non-anticipatory. We refer to Megow,
Uetz, and Vredeveld [17] for a more detailed discussion on stochastic online policies.

In this paper we concentrate on (online) approximation policies. As suggested in [17] we use
a generalized definition of approximation guarantees from the stochastic scheduling setting [18].

Definition 1. A (online) stochastic policy Π is a ρ-approximation, for some ρ ≥ 1, if for all
problem instances I,

E [Π(I)] ≤ ρ E [opt(I)] ,

where E [Π(I)] and E [opt(I)] denote the expected values that the policy Π and an optimal
non-anticipatory offline policy, respectively, achieve on a given instance I. The value ρ is called
performance guarantee of policy Π.

Previous work. Stochastic scheduling has been considered for more than 30 years. Some of the
first results on preemptive scheduling that can be found in literature are by Chazan, Konheim,
and Weiss [2] and Konheim [13]. They formulated sufficient and necessary conditions for a
policy to solve optimally the single machine problem where all jobs become available at the
same time. Later Sevcik [27] developed an intuitive method for creating optimal schedules (in
expectation). He introduces a priority policy that relies on an index which can be computed
for each job based on the properties of a job, but not on other jobs.

Gittins [7] showed that this priority index is a special case of his Gittins index [7, 8]. Later
in 1995, Weiss [33] formulated Sevcik’s priority index again in terms of the Gittins index and

Approximation Results for Preemptive Stochastic Online Scheduling 3

names it a Gittins index priority policy. He also provided a different proof of the optimality of
this priority policy, based on the work conservation invariance principle. Weiss covers a more
general problem than the one considered here and in [2, 13, 27]: The holding costs (weights) of
a job are not deterministic constants, but may vary during the processing of a job. At each
state these holding costs are random variables.

For more general scheduling problems with release dates and/or multiple machines, no op-
timal policies are known. Instead, literature reflects a variety of research on restricted problems
as those with special probability distributions for processing times or special job weights [1, 32,
21, 5, 11, 10, 33]. For the parallel machine problem without release dates it is worthy to mention
that Weiss [33] showed that the Gittins index priority policy above is asymptotically optimal
and has a turnpike property, which means that there is a bound on the number of times that
the policy differs from an optimal policy.

Optimal policies have only been found for a few special cases of stochastic scheduling
problems. Already the deterministic counterpart, P | rj , pmtn |E [

∑
wjCj], of the scheduling

problem we consider, is well-known to be NP-hard, even in the case that there is only a
single processor or if all release dates are equal [14, 15]. Therefore, recently attempts have
been made on obtaining approximation algorithms which have been successful in the nonpre-
emptive setting. Möhring, Schulz, and Uetz [20] derived first constant-factor approximations
for the nonpreemptive problem with and without release dates. They were improved later
by Megow et al. [17] and Schulz [24] for a more general setting. Skutella and Uetz [29] comple-
mented the first approximation results by constant-approximative policies for scheduling with
precedence constraints. In general, all given performance guarantees for nonpreemptive policies
depend on a parameter defined by expected values of processing times and the coefficients of
variation.

In contrast to stochastic scheduling, in a deterministic online model is assumed that no
information about any future job arrival is available. However, once a job arrives, its weight
and actual processing time become known immediately. The performance of online algorithms
is typically assessed by their competitive ratio [12, 30]. An algorithm is called ρ-competitive if
it achieves for any instance a solution with a value at most ρ times the value of an optimal
offline solution.

In this deterministic online model, Sitters [28] gives a 1.56-competitive algorithm for pre-
emptive scheduling on a single machine. This is the currently best known and it improved upon
an earlier result by Schulz and Skutella [25]; they generalized the classical Smith rule [31] to
the problem of scheduling jobs with individual release dates and achieved a competitive ratio
of 2. This algorithm has been generalized further to the multiple machine problem without loss
of performance by Megow and Schulz [16]. As far as we know, there is no randomized online
algorithm known with a provable competitive ratio less than 2 for this problem. In contrast,
Schulz and Skutella [26] provide a 4/3-competitive algorithm for the single machine problem.

Recently, the stochastic scheduling model as we consider it in this paper has been investi-
gated; all obtained results which include asymptotic optimality [4] and approximation guaran-
tees for deterministic [17] and randomized policies [17, 24] address nonpreemptive scheduling.

Our contribution. We derive first constant performance guarantees for preemptive stochastic
scheduling. For jobs with general processing time distributions and individual release dates,
we give 2-approximation policies for multiple machines. This performance guarantee matches
the currently best known result in deterministic online scheduling although we consider a more
general model. In comparison to the previously known results in this model in a nonpreemptive

4 Megow and Vredeveld

setting, our result stands out by being constant and independent of the probability distribution
of processing times.

In general our policies are not optimal. However, on restricted problem instances they
coincide with policies whose optimality is known. If processing times are exponentially dis-
tributed and release dates are absent, our deterministic parallel machine policy coincide with
the Weighted shortest expected processing time (WSEPT) rule. This classical policy is known
to be optimal if all weights are equal [1] or, more general, if they are agreeable, which means
that for any two jobs i, j holds that E [P i] < E [P j] implies wi ≤ wj [11]. If only one machine
is available, we solve the simple weighted problem 1 | pmtn |E [

∑
wjCj] optimally by utilizing

the Gittins index priority policy [13, 27, 33]. Moreover, Pinedo showed in [21] that in presence
of release dates the WSEPT rule is optimal if all processing times are exponentially distributed.
Furthermore, in the deterministic setting our single machine policy solves instances of the prob-
lem 1 | rj , pmtn |

∑
Cj optimally since it achieves the same schedule as Schrage’s [23] Shortest

remaining processing time (SRPT) rule. This performance is achieved in the weighted setting,
as well, if all release dates are equal, in which case our policy coincides with Smith’s rule [31].

Our results are based on a new nontrivial lower bound for the preemptive stochastic schedul-
ing problem. This bound is derived by borrowing ideas for a fast single machine relaxation from
Chekuri et al. [3]. The crucial ingredient to our results is then the application of a Gittins index
priority policy which is optimal to a relaxed version of our fast single machine relaxation.

The paper is organized as follows: Section 2 defines the gittins index priority rule and
further preliminaries, whereas in Section 3 the new lower bound on the optimum for the pre-
emptive stochastic scheduling problem is derived. In Section 4, a first parallel machine policy
is introduced. It is followed by a more sophisticated policy for the single machine that uses
more information of the current status of jobs being processed and by an immediate random-
ized extension to multiple machines. For the last two policies we cannot show an improved
performance guarantee. However, there is well-founded hope that their approximation factor
is less than proven, whereas the analysis of the deterministic policy in Section 4 is tight.

2 A Gittins index priority policy

As mentioned in the introduction, a Gittins index priority policy solves the single machine
problem with trivial release dates to optimality, see [13, 27, 33]. This result is crucial for the
approximation results we give in this paper; it inspires the design of our policies and it serves
as a tool for bounding the expected value of an unknown optimal policy for the more general
problem that we consider. Therefore, we introduce in this section the Gittins index priority
rule and some useful notation.

Given that a job j has been processed for y time units, we define the expected investment
of processing this job for q time units or up to completion, which ever comes first, as

Ij(q, y) = E [min{P j − y, q} |P j > y] .

The ratio of the weighted probability that this job is completed within the next q time units
over the expected investment, is the basis of the Gittins index priority rule. Therefore, we define
this as the rank of a sub-job of length q of job j, after it has completed y units of processing:

Rj(q, y) =
wjPr [P j − y ≤ q |P j > y]

Ij(q, y)
.

Approximation Results for Preemptive Stochastic Online Scheduling 5

For a given (unfinished) job j and attained processing time y, we are interested in the maximal
rank it can achieve. We call this the Gittins index, or rank, of job j, after it has been processed
for y time units.

Rj(y) = max
q∈R+

Rj(q, y).

The length of the sub-job achieving the maximal rank is denoted as

qj(y) = max{ q ∈ R+ : Rj(q, y) = Rj(y) }.

With these definitions, we define the Gittins index priority policy.

Algorithm 1: Gittins index priority policy (Gipp)

At any time t, process an unfinished job j with currently highest rank Rj(yj(t)),
where yj(t) denotes the amount of processing that has been done on job j by
time t. Break ties by choosing the job with the smallest job index.

Theorem 1 ([13, 27, 33]). The Gittins index priority policy (Gipp) solves the preemptive
stochastic scheduling problem 1 | pmtn |E [

∑
wjCj] optimally.

The following properties of the Gittins indices and the lengths of sub-jobs achieving the Gittins
index are well known, see [8, 33]. In parts, they have been derived earlier in the scheduling
context by [13] and [27].

Proposition 1 ([8, 33]) Consider a job j that has been processed for y time units. Then, for
any 0 < γ < qj(y) holds

Rj(y) ≤ Rj(y + γ) , (1)
qj(y + γ) ≤ qj(y)− γ , (2)

Rj(y + qj(y)) ≤ Rj(y) . (3)

Let us denote the sub-job of length qj(y) that causes the maximal rank Rj(y), a quantum of
job j. We now split a job j into a set of nj quanta, denoted by tuples (j, i), for i = 1, . . . , nj .
The processing time yji that a job j has attained up to a quantum (j, i) and the length of
each quantum, qji, are recursively defined as yj1 = 0, qji = qj(yji), and yj,i+1 = yj,i + qji.
By Proposition 1(1), we know that, while processing a quantum, the rank of the job does not
decrease, whereas Proposition 1(3) and the definition of qj(y) tell us that the rank is strictly
lower at the beginning of the next quantum. Hence, once a quantum has been started Gipp
will process it for its complete length or up to the completion of the job, whatever comes first.
Thus, a job is preempted only at the end of a quantum. Obviously, the policy Gipp processes
job quanta nonpreemptively in non-increasing order of their ranks.

Based on the definitions above, we define the set H(j, i) of all quanta that preceed quan-
tum (j, i) in the Gipp order. Let Q be the set of all quanta, i. e., Q = {(k, l) | k = 1, . . . , n, l =
1, . . . , nk }, then

H(j, i) = {(k, l) ∈ Q | Rk(ykl) > Rj(yji) } ∪ {(k, l) ∈ Q | Rk(ykl) = Rj(yji) ∧ k ≤ j } .

As the Gittins index of a job is decreasing with every finished quantum 1(3), we know that
H(j, h) ⊆ H(j, i), for h ≤ i. In order to uniquely relate higher priority quanta to one quantum

6 Megow and Vredeveld

of a job, we introduce the notation H ′(j, i) = H(j, i) \H(j, i− 1), where we define H(j, 0) = ∅.
Note that the quantum (j, i) is also contained in the set of its higher priority quanta H ′(j, i).
In the same manner, we define the set of lower priority quanta as L(j, i) = Q \H(j, i).

With these definitions and the observations above we can give a closed formula for the
expected objective value of Gipp.

Lemma 2. The optimal policy for the scheduling problem 1 | pmtn |E [
∑

wjCj], Gipp, achieves
the expected objective value of

E [Gipp] =
∑

j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl).

Proof. Consider a realization of processing times p ∈ Ω and a job j. Let ip be the index of
the quantum in which job j finishes, i. e., yjip < pj ≤ yjip + qjip . The policy Gipp processes
quanta of jobs that have not completed nonpreemptively in non-increasing order of their ranks.
Hence,

Cj(p) =
∑

(k,l)∈H(j,ip) : pk>ykl

min{qkl, pk − ykl} . (4)

For an event E , let χ(E) be an indicator random variable which equals 1 if and only if the
event E occurs. The expected value of χ(E) equals then the probability with that the event E
occurs, i. e., E [χ(E)] = Pr [E] . Additionally, we denote by ξkl the special indicator random
variable for the event P k > ykl.

We take expectations on both sides of equation (4) over all realizations. This yields

E [Cj] = E

 ∑
h:yjh<Pj≤yj,h+1

∑
(k,l)∈H(j,h):Pk>ykl

min{qkl, P k − ykl}


= E

 nj∑
h=1

χ(yjh < P j ≤ yj,h+1)
∑

(k,l)∈H(j,h)

ξkl ·min{qkl, P k − ykl}


= E

 nj∑
h=1

χ(yjh < P j ≤ yj,h+1)
h∑

i=1

∑
(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}


= E

 nj∑
i=1

nj∑
h=i

χ(yjh < P j ≤ yj,h+1)
∑

(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}


= E

 nj∑
i=1

χ(yji < P j)
∑

(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}


= E

 nj∑
i=1

ξji

∑
(k,l)∈H′(j,i)

ξkl ·min{qkl, P k − ykl}

 . (5)

The equalities follow from an index rearrangement and the facts that H(j, h) = ∪h
i=1H

′(j, i)
for any h and that nj is an upper bound on the number of quanta of job j.

Approximation Results for Preemptive Stochastic Online Scheduling 7

For jobs k 6= j, the processing times P j and P k are independent random variables and thus,
the same holds for their indicator random variables ξji and ξkl for any i, l. Using linearity of
expectation, we rewrite (5) as

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

E [ξji · ξkl ·min{qkl, P k − ykl}]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

∑
x

x · Pr [ξji = ξkl = 1 ∧min{qkl, P k − ykl} = x]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

∑
x

x · Pr [ξji = ξkl = 1] · Pr [min{qkl, P k − ykl} = x | ξkl = 1]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · E [min{qkl, P k − ykl} |P k > ykl]

=
nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl) ,

where the third equality follows from conditional probability and the fact that either j 6= k,
thus ξji and ξkl are independent, or (j, i) = (k, l) and thus the variables ξji and ξkl are the
same. Weighted summation over all jobs concludes the proof. ut

3 A new lower bound on the optimum on parallel machines

For the scheduling problem P | rj , pmtn |E [
∑

wjCj] and most of its relaxations, optimal offline
policies and the corresponding expected objective values are unknown. Therefore, we use lower
bounds on the optimal value in order to compare the expected outcome of a policy with the
expected outcome E [opt] of an unknown optimal policy opt. The trivial bound E [opt] ≥∑

j wj(rj +E [P j]) is unlikely to suffice proving constant approximation guarantees. However,
we are not aware of any other bounds known for the general preemptive problem. LP-based
approaches as they are used in the non-preemptive setting [20, 29, 4, 17, 24] do not transfer
directly.

We derive in this section a new non-trivial lower bound for preemptive stochastic scheduling
on parallel machines. We utilize the knowledge of Gipp’s optimality for the single machine
problem without release dates, see Theorem 1. To do so, we show first that the fast single
machine relaxation introduced in deterministic online environment [3] applies in the stochastic
setting as well.

Lemma 3. Denote by I a scheduling instance of the problem type P | rj , pmtn |E [
∑

wjCj],
and let I ′ be the same instance to be scheduled on a single machine of speed m times the speed
of the machines used for scheduling instance I. The optimal single machine policy opt1 yields
an expected value E [opt1(I ′)] on instance I ′. Then, for any parallel machine policy Π holds

E [Π(I)] ≥ E [opt1(I ′)] .

Proof. Given a parallel machine policy Π, we provide a policy Π ′ for the fast single machine
that yields an expected objective value E [Π ′(I ′)] ≤ E [Π(I)] for any instance I. Then the

8 Megow and Vredeveld

lemma follows since an optimal policy opt1 on the single machine yields an expected objective
value E [opt1(I ′)] ≤ E [Π ′(I ′)].

We construct policy Π ′ by letting its first decision point coincide with the first decision
point of policy Π (the earliest release date). At any of its decision points, Π ′ can compute the
jobs to be scheduled by policy Π and due to the fact that the processing times of all jobs are
discrete random variables, it computes the earliest possible completion time of these jobs, in
the parallel machine schedule. The next decision point of Π ′, is the minimum of these possible
completion times and the next decision point of Π. Between two consecutive decision points of
Π ′, the policy schedules the same set of jobs that Π schedules, for the same amount of time.
This is possible as the single machine on which Π ′ operates works m times as fast.

In this way, we ensure that all job completions in the parallel machine schedule obtained
by Π, coincide with a decision point of policy Π ′. Moreover, as Π ′ schedules the same set of
jobs as Π between two decision points, any job that completes its processing at a certain time
t in the schedule of Π, will also be completed by time t in the schedule of Π ′. ut

With this relaxation, we derive a lower bound on the expected optimal value.

Theorem 2. The expected value of an optimal policy opt for the parallel machine problem I
is bounded by

E [opt(I)] ≥ 1
m

∑
j

wj

nj∑
i=1

∑
(k,`)∈H′(j,i)

Pr [P j > yji ∧ P k > yk`] · Ik(qk`, yk`) .

Proof. We consider the fast single machine instance I ′ as introduced in the previous lemma and
relax it further to instance I ′0 by setting all release dates equal. By Theorem 1, the resulting
problem can be solved optimally by Gipp. With Lemma 3 we have then

E [opt(I)] ≥ E [opt1(I ′)] ≥ E [Gipp(I ′0)] . (6)

By Lemma 2 we know

E [Gipp(I ′0)] =
∑

j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr
[
P ′j > y′ji ∧ P ′k > y′kl

]
· I ′k(q′kl, y

′
kl) , (7)

where the dashes indicate the modified variables in the fast single machine instance I ′0. By
definition holds P ′j = P j/m for any job j as well as Pr [P j > x] = Pr

[
P ′j > x/m

]
, and the

probability Pr [P j − y = x |P j > y] for the remaining processing time after y units of processing
remains the same on the fast machine. Moreover, the investment I ′j(q

′, y′) for any sub-job of
length q′ = q/m of job j ∈ I ′ after it has received y′ = y/m units of processing coincides with

I ′j(q
′, y′) = E

[
min{P ′j − y′, q′} |P ′j > y′

]
=

1
m

E [min{P j − y, q} |P j > y] =
1
m

Ij(q, y) .

We conclude that the partition of jobs into quanta in instance I immediately gives the partition
for the fast single machine instance. Each quantum (j, i) of job j maximizes the rank Rj(q, yji)
and thus q′ = q/m maximizes the rank R′j(q/m, y/m) = Rj(q, y)/m on the single machine;
thus, the quanta are simply shortened to an m-fraction of the original length, q′ji = qji/m and
thus, y′ji =

∑i−1
l=1 q′jl = yji/m.

Approximation Results for Preemptive Stochastic Online Scheduling 9

Combining these observations with (6) and (7) yields

E [opt(I)] ≥ 1
m

∑
j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl) .

ut

Theorem 2 above and Lemma 2 imply immediately

Corollary 1. The lower bound on the optimal preemptive policy for parallel machine schedul-
ing on an instance I equals an m-fraction of the expected value achieved by Gipp on the
relaxed instance I0 without release dates but the same processing times to be scheduled on one
machine, i. e.,

E [opt(I)] ≥ E [Gipp(I0)]
m

. (8)

4 A 2-approximation on parallel machines

Simple examples show that Gipp is not an optimal policy for scheduling problems with release
dates and/or multiple machines. The following policy uses a modified version of Gipp where
the rank of jobs is updated only after the completion of a quantum.

Algorithm 2: Follow Gittins Index Priority Policy (F-Gipp)

At any time t, process an available job j with highest rank Rj(yj,k+1), where (j, k)
is the last quantum of j that has completed, or k = 0 if no quantum of job j has
been completed.

Note, that the decision time points in this policy are release dates and any time, when a
quantum or a job completes. In contrast to the original Gittins index priority policy, F-Gipp
considers only the rank Rj(yji =

∑i−1
k=1 qjk) that a job had before processing quanta (j, i) even

if (j, i) has been processing for some time less than qji. Informally speaking, the policy F-Gipp
updates the ranks only after quantum completions and then follows Gipp.

This policy applied to a deterministic scheduling instance coincides with the P-WSPT rule
by Megow and Schulz [16] which is a generalization of Smith’s [31] optimal nonpreemptive
single machine algorithm to the deterministic counterpart of our scheduling problem without
release dates. It has a competitive ratio of 2, and we prove the same performance guarantee
for the more general stochastic online setting.

Theorem 3. The online policy F-Gipp is a deterministic 2-approximation for the preemptive
scheduling problem P | rj , pmtn |E [

∑
wjCj].

Proof. This proof incorporates ideas from [16] applied to the more complex stochastic set-
ting. Fix a realization p ∈ Ω of processing times and consider a job j and its completion
time CF-Gipp

j (p). Job j is processing in the time interval [rj , C
F-Gipp
j (p)]. We split this interval

into two disjunctive sets of sub-intervals, T (j, p) and T (j, p), respectively. Let T (j, p) denote the
set of sub-intervals in which job j is processing and T (j, p) contains the remaining sub-intervals.
Denoting the total length of all intervals in a set T by |T |, we have

CF-Gipp
j (p) = rj + |T (j, p)|+ |T (j, p)| .

10 Megow and Vredeveld

In intervals of the set T (j, p), no machine is idle and F-Gipp schedules only quanta with a
higher priority than (j, ip), the final quantum of job j. Thus |T (j, p)| is maximized if all these
quanta are scheduled between rj and CF-Gipp

j (p) with an upper bound on the overall length of
the total sum of quantum lengths on m machines. The total length of intervals in T (j, p) is pj

and it follows

CF-Gipp
j (p) ≤ rj + pj +

1
m
·

∑
(k,l)∈H(j,ip) :

pk>ykl

min{qkl, pk − ykl} .

Weighted summation over all jobs and taking expectations on both sides give with the same
arguments as in Lemma 2:∑

j

wjE
[
CF-Gipp

j

]
≤

∑
j

wj (rj + E [P j]) +
1
m
·
∑

j

wj

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ pk > ykl] · Ik(qkl, ykl) .

Finally, we apply the trivial lower bound E [opt] ≥
∑

j wj(rj + E [P j]) and Theorem 2, and
the approximation result follows. ut

In the case of exponentially distributed processing times and the absence of release dates,
our policy F-Gipp coincides with the Weighted shortest expected processing time (WSEPT)
rule. This rule is known to be optimal if all weights are equal [1] or, more general, if they
are agreeable, which means that for any two jobs i, j holds that E [P i] < E [P j] implies wi ≤
wj [11]. On the single machine our policy coincides with the WSEPT rule, if all processing times
are drawn from exponential distributions, and is optimal [21]. In absence of release dates and
for general processing times, our policy coincides with Gipp and is thus optimal (Theorem 1)
even if jobs have individual weights.

Nevertheless, for general input instances the approximation factor of 2 is best possible for
F-Gipp which follows directly from a deterministic worst-case instance in [16].

5 A different policy

While the analysis of F-Gipp is tight, we present in this section another single machine policy
with the same approximation guarantee. In contrast to the previous policy, we now deviate less
from the original Gittins index priority rule and, thus, we use more information on the actual
state of the set of known, unfinished jobs.

5.1 Single machine: generalized gittins index priority policy

We consider the online problem of preemptive scheduling on a single processor. As mentioned
earlier, Gipp is not an optimal policy even in this single machine setting due to jobs arriving
online over time. A straightforward extension of the policy Gipp is to choose at any time the
job with highest rank among the set of available jobs. Available means that job j is released
and has not been completed.

Approximation Results for Preemptive Stochastic Online Scheduling 11

Algorithm 3: Generalized Gittins Index Priority Policy (Gen-Gipp)

At any time t, process an available job j with currently highest rank, Rj(yj(t)),
depending on the amount of processing yj(t) that the job j has completed by time t.

In principle, the jobs are still processed in non-increasing order of maximum ranks as in Gipp.
Applied to an instance with equal release dates, both policies, Gipp and Gen-Gipp, yield
the same schedule. The generalization in the policy Gen-Gipp concerns the fact that we
incorporate release dates and cause preemptions of quanta whereas the Gipp policy preempts
jobs only after completion of a quantum. Due to different arrival times in our current setting,
Gen-Gipp preempts jobs within the processing of a quantum if a job with a higher rank is
released. The interesting question concerns now the effect of those quantum preemptions on
the job ordering.

From Proposition (1), we know that if a quantum (j, k) is preempted after γ < qjk units of
processing, the rank of job j has not decreased, i.e., Rj(yjk + γ) ≥ Rj(yjk). Hence, all quanta
with a lower priority than the original priority of (j, k) available at or after the time that (j, k)
is preempted will not be processed before quantum (j, k) is completed.

Consider a realization of processing times p ∈ Ω and a job j in the schedule obtained
by Gen-Gipp. Let ip be the index of the quantum in which job j finishes, i. e., yjip < pj ≤
yjip +qjip . Then the completion time CGen-Gipp

j of job j can be bounded by its release date plus
the total length of the quanta that have a higher rank than (j, ip) at time rj . This includes
quanta of jobs k with rk > rj since they have rank Rk(0) even though they are not available
for scheduling.

This set of quanta contains not solely quanta in H(j, ip), i. e., quanta that have a higher
priority than (j, ip). The reason is that in the presence of release dates, the following situation
is possible: a part of quantum (k, l) ∈ L(j, ip) is scheduled before quantum (j, ip) which has
higher rank even though job j is available. This happens when job k has been processed
for γ ∈ (ykl, yk,l+1) units of time before time rj and its rank improved (increased) such that
Rk(γ) > Rj(yjip). We call this event Ek,jip(γ) and we say that job k or one of its quanta
disturbs (j, ip). Formally we define,

Ek,ji(γ) = {by time rj , k has been processed for γ units of time
and Rk(γ) > Rj(yji) } .

The amount of time that the quantum (k, l) disturbs (j, i) is given by

qji
kl(γ) = max{q ≤ yk,l+1 − γ : Rk(γ + q) > Rj(yji)}.

Note, that the event Ek,ji(γ) only depends on the (partial) realizations of jobs that have been
processed before rj and is thus independent of P j . Furthermore, the amount of processing γ is
integral since w.l.o.g. we restricted all release dates and processing times to integer values and
therefore Gen-Gipp preempts jobs only at integral points in time.

Now, let us come back to the completion time of a job j in a realization p ∈ Ω. As stated
above, it can be bounded by rj plus the total sum of quanta that have a higher rank at time
rj . These are

(i) all quanta in H(j, ip) except of those for which event Ej,kl(γ) occurs with pj ∈ (γ, γ+qkl
ji (γ)]

(i. e., quanta that are disturbed by (j, ip) with j completing while it is disturbing), and

12 Megow and Vredeveld

(ii) the quanta (k, l) ∈ L(j, ip) for which an event Ek,jip(γ) occurs for some γ > ykl (i. e., quanta
that disturb (j, ip)).

Formalized, that is

Proposition 1. Given a realization p ∈ Ω and a job j, let ip be the index of the quantum in
which this job finishes, i. e., yjip < pj ≤ yj,ip+1. Then, the completion time of job j in the
Gen-Gipp schedule can be bounded by

CGen-Gipp
j (p) ≤ rj

+
∑

(k,l)∈H(j,ip) : pk>ykl

min{qkl, pk − ykl} (9)

−
∑

(k,l)∈H(j,ip):
pk>ykl

∑
γ : Ej,kl(γ),

pj∈(γ,γ+qkl
ji

(γ)]

min{qkl, pk − ykl} (10)

+
∑

(k,l)∈L(j,ip):
pk>ykl

∑
γ : Ek,jip

(γ),

pk>γ>ykl

min{qji
kl(γ), pk − γ} . (11)

Given the above bound for a particular realization, we compute the expected completion time
of job j.

Lemma 4. The expected completion time of job j under Gen-Gipp can be bounded by

E
[
CGen-Gipp

j

]
≤ rj +

nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl)

−
nj∑
i=1

∑
(k,l)

∈H(j,i)

∞∑
γ=yji

Pr
[
Ej,kl(γ) ∧ γ < P j ≤ γ + qkl

ji (γ)
]
· Pr [P k > ykl] · Ik(qkl, ykl)

+
nj∑
i=1

∑
(k,l)∈L(j,i)

∞∑
γ=ykl

Pr [yji < P j ≤ yj,i+1] · Pr [Ek,ji(γ) ∧ P k > γ] · Ik(qji
kl(γ), γ) .

Proof. The bound in Proposition 1 holds for each realization p ∈ Ω. Taking the expectation
over all realizations on both sides we get an upper bound on the expected completion time of a
job j scheduled by Gen-Gipp. By linearity of expectation we can consider the sum of expected
values of the summands (9), (10) and (11) separately.

As in Section 2, let χ(E) be an indicator random variable which equals 1 if and only if the
event E occurs and denote by ξkl the special indicator random variable for the event P k > ykl.
In the following paragraphs, we show how to transform the expected values of (9) to (11) such
that their sum plus E [rj] equals the claimed expression. The term (9) equals exactly the right
hand side of equation (4) in the proof of Lemma 2. In that proof we showed that

E [(9)] =
nj∑
i=1

∑
(k,l)∈H′(j,i)

Pr [P j > yji ∧ P k > ykl] · Ik(qkl, ykl) .

Approximation Results for Preemptive Stochastic Online Scheduling 13

Similarly, we transform the expected value of∑
i<nj :

yji<Pj≤yj,i+1

∑
(k,l)∈H(j,i) :

Pk>ykl

∑
γ : Ej,kl(γ),

Pj∈(γ,γ+qkl
ji

(γ)]

min{qkl, Pk − ykl}

from (10) to

E


nj∑
i=1

χ(yji < P j ≤ yj,i+1)
∑

(k,l)∈H(j,i) :
Pk>ykl

∑
γ : Ej,kl(γ),

Pj∈(γ,γ+qkl
ji

(γ)]

min{qkl, Pk − ykl}


= E

 nj∑
i=1

∑
(k,l)

∈H(j,i)

∞∑
γ=yji

χ
(
γ < P j ≤ γ + qkl

ji (γ) ∧ P k > ykl ∧ Ej,kl(γ)
)
min{qkl, P k − ykl}


=

nj∑
i=1

∑
(k,l)

∈H(j,i)

∞∑
γ=yji

Pr
[
Ej,kl(γ) ∧ γ < P j ≤ γ + qkl

ji (γ)
]
· Pr [P k > ykl] · Ik(qkl, ykl) .

Finally, the expected value of Term (11) can be reformulated in an equivalent way and therefore
we omit the details for showing

E [(11)] =
nj∑
i=1

∑
(k,l)

∈L(j,i)

∞∑
γ=ykl

Pr [yji < P j ≤ yj,i+1] · Pr [Ek,ji(γ) ∧ P k > γ] · Ik(qji
kl(γ), γ) .

This concludes the proof. ut

Note, that in the absence of release dates the events Ej,kl(γ) do not occur for any job j ∈ J
and any γ > 0. Now, we can give the approximation guarantee.

Theorem 4. Gen-Gipp is a 2-approximative policy for the problem 1 | rj , pmtn |E [
∑

wjCj].

Proof. By Lemma 4 and Corollary 2 we can bound the expected objective value, E [Gen-Gipp],
of a schedule that has been obtained by Gen-Gipp as follows

E [Gen-Gipp] =
∑

j

wjE
[
CGen-Gipp

j

]
≤

∑
j

wjrj + E [Gipp] +
∑

j

wj (Oj −Nj),

where

Oj =
nj∑
i=1

∑
(k,l)

∈L(j,i)

∞∑
γ=ykl

Pr [yji < P j ≤ yj,i+1] · Pr [Ek,ji(γ) ∧ P k > γ] · Ik(qji
kl(γ), γ)

Nj =
nj∑
i=1

∑
(k,l)

∈H(j,i)

∞∑
γ=yji

Pr
[
Ej,kl(γ) ∧ γ < P j ≤ γ + qkl

ji (γ)
]
· Pr [P k > ykl] · Ik(qkl, ykl) .

14 Megow and Vredeveld

We claim that
∑

j wj (Oj−Nj) ≤ 0 and give the proof in Lemma 5 below. This implies the the-
orem due to the trivial lower bound on the expected value of an optimal policy opt, E [opt] ≥∑

j wj rj , and the fact that Gipp is an optimal policy for the relaxed problem without release
dates (Theorem 1), which gives E [opt] ≥ E [Gipp]. ut

Lemma 5. Let

Oj =
nj∑
i=1

∑
(k,l)

∈L(j,i)

∞∑
γ=ykl

Pr [yji < P j ≤ yj,i+1] · Pr [Ek,ji(γ) ∧ P k > γ] · Ik(qji
kl(γ), γ)

and

Nj =
nj∑
i=1

∑
(k,l)

∈H(j,i)

∞∑
γ=yji

Pr
[
Ej,kl(γ) ∧ γ < P j ≤ γ + qkl

ji (γ)
]
· Pr [P k > ykl] · Ik(qkl, ykl) ,

then ∑
j

wj (Oj −Nj) ≤ 0 .

Proof. In order to prove the claim, we first note that (j, i) ∈ H(k, l) for jobs k 6= j im-
plies (k, l) ∈ L(j, i) and vice versa. Moreover, the event Ej,ji(γ) is empty for all i and γ. Thus,
we can transform

∑
k wk Nk by rearranging indices:

∑
k

wk Nk

=
∑

k

nk∑
l=1

∑
(j,i)

∈H(k,l)

∞∑
γ=ykl

wk Pr [Ek,ji(γ) ∧ γ < P k ≤ yk,l+1] · Pr [P j > yji] · Ij(qji, yji)

=
∑

j

nj∑
i=1

∑
(j,i)

∈L(k,l)

∞∑
γ=ykl

wk Pr [Ek,ji(γ) ∧ γ < P k ≤ yk,l+1] · Pr [P j > yji] · Ij(qji, yji) .

Secondly, note that by definition of the conditional probability holds

Pr [yji < P j ≤ yj,i+1] = Pr [P j > yji] · Pr [P j ≤ yj,i+1 |P j > yji] ,

for any quantum (j, i). Moreover, due to the independence of the processing times, we know
that Pr [Ek,ji(γ) ∧ γ < P k ≤ y] = Pr [Ek,ji(γ) ∧ P k > γ] · Pr [P k ≤ y |P k > γ] for any y. With

Approximation Results for Preemptive Stochastic Online Scheduling 15

these arguments we have∑
j

wj (Oj −Nj)

=
∑

j

nj∑
i=1

∑
(k,l)

∈L(j,i)

∞∑
γ=ykl

(
wj Pr [yji < P j ≤ yj,i+1] Pr [Ej,kl(γ) ∧ P k > γ] · Ik(qji

kl(γ), γ)

− wk Pr
[
Ek,ji(γ) ∧ γ < P k ≤ γ + qji

kl(γ)
]
· Pr [P j > yji] · Ij(qji, yji)

)
=

∑
j

nj∑
i=1

∑
(k,l)

∈L(j,i)

∞∑
γ=ykl

Pr [Ej,kl(γ) ∧ P k > γ] · Pr [P j > yji] ·

(
wj Pr [P j ≤ yj,i+1 |P j > yji] · Ik(qji

kl(γ), γ)

− wk Pr
[
P k ≤ γ + qji

kl(γ) |P k > γ
]
· Ij(qji, yji)

)
≤ 0 ,

because when event Ek,ji(γ) occurs, we know that Rk(qji
kl(γ), γ) ≥ Rj(qji, yji) and thus,

wk Pr
[
P k ≤ γ + qji

kl(γ) |P k > γ
]

Ik(qji
kl(γ), γ)

= Rk(qji
kl(γ), γ) ≥ Rj(qji, yji)

=
wj Pr [P j ≤ yj,i+1 |P j > yji]

Ij(qji, yji)
.

ut

We conjecture that the true approximation ratio of Gen-Gipp is less than 2. We give a bad
instance for which Gipp cannot achieve a performance ratio less than 1.21. This example is a
deterministic online instance. Note that in this case, Gen-Gipp schedules at any time the job
with highest ratio of weight over remaining processing time.

Example 1. The instance consists of k + 2 jobs: a high priority job h with unit weight and
processing requirement, a low priority job l of length pl and unit weight and k small jobs of
length ε. The job l and the first small job are released at time 0 followed by the remaining
small jobs at times rj = (j − 1)ε for j = 2, . . . , k whereas the high priority job is released at
time rh = pl − 1. The weights of the small jobs are wj = ε/(pl − (j − 1)ε) for j = 1, . . . , k. We
choose ε such that all small jobs could be processed until rh, i. e., ε = rh/k = (pl − 1)/k.

W.l.o.g. we can assume that Gen-Gipp starts processing job l at time 0. Note that the
weights of the small jobs are chosen such that the ratio of weight over remaining processing
time of job l at the release date of a small job equals the ratio of the newly released small job,
and thus Gen-Gipp does not preempt l until at time rh = pl − 1 when job h is released and
starts processing. After its completion, job j is finished, followed by the small jobs l, l−1, . . . , 1.
The value of the achieved schedule is

2pl + 1 +
k∑

i=1

(pl + 1 + iε)
ε

pl − (k − i)ε
.

16 Megow and Vredeveld

An optimal policy, instead, processes first all small jobs followed by the high priority job and
finishes with the job l. The value of such a schedule is

k∑
i=1

iε
ε

pl − (i− 1)ε
+ 3pl .

If the number of small jobs, k, tends to infinity then the performance ratio of Gen-Gipp is no
less than

pl(3− log 1
pl−1 + log pl

pl−1)

1 + 2pl + pl log pl

which gives a lower bound of 1.21057 for pl ≈ 5.75.
However, Gen-Gipp solves deterministic instance with equal weights optimally, since in

that case it coincides with Schrage’s [23] Shortest remaining processing time (SRPT) rule
which is known to find the optimal schedule.

5.2 A randomized extension to parallel machines

In this section we derive a randomized policy for multiple machines that utilizes the single
machine policy Gen-Gipp in a straightforward way. It yields again an approximation guarantee
of 2.

Algorithm 4: Randomized Gittins Index Priority Policy (Rand-Gipp)

Assign a job at its release date to any of the m machines by choosing one with
probability 1/m. On each of the machines run the Gen-Gipp policy, i. e., at any
point in time schedule on each machine mi the quantum with currently highest
rank among the available, not yet completed jobs that have been assigned to mi.

Theorem 5. The online policy Rand-Gipp is a 2-approximation for the preemptive scheduling
problem on parallel machines P | rj , pmtn |E [

∑
wjCj].

Proof. The policy uses the single machine policy Gen-Gipp and parts of the performance
analysis from the previous section can also be recycled. Therefore, we avoid repeating rather
complex terms and ask the reader to follow the references.

Consider a realization p ∈ Ω of processing times and a job j. Denote by j → mx that job j
is assigned to machine mx in the considered realization. Since on each machine mx the single
machine policy Gen-Gipp runs, the completion time of job j, given that it is processing on
machine mx, is given in Corollary 1 with a minor modification for our current setting, i. e., we
sum up only over jobs that are assigned to the same machine mx as job j. We denote the
corresponding value by (9)′ + (10)′ + (11)′. Thus, the expected completion time of j over all

Approximation Results for Preemptive Stochastic Online Scheduling 17

realizations is

E
[

CRand-Gipp
j

∣∣∣∣ j → mx

]
≤ rj + E

[
(9)′ + (10)′ + (11)′ | j → mx

]
≤ rj +

∑
k

Pr [k → mx | j → mx] · E [(9) + (10) + (11) | j → mx]

= rj +
∑

k

Pr [k → mx | j → mx] · E [(9) + (10) + (11)] .

Unconditioning the expected completion time from the fixed machine assignment and using
the fact that all jobs are assigned to mx with the same probability 1/m, independently of each
other, yield

E
[
CRand-Gipp

j

]
=

m∑
x=1

Pr [j → mx] · E
[

CRand-Gipp
j

∣∣∣∣ j → mx

]

≤
m∑

x=1

Pr [j → mx]
(
rj +

∑
k

Pr [k → mx | j → mx] E [(9) + (10) + (11)]
)

≤ rj +
1
m

E [(9) + (10) + (11)] .

The total expected value of the schedule is then

E [Rand-Gipp] =
∑

j

wjE
[
CRand-Gipp

j

]
≤

∑
j

wj rj +
1
m

∑
j

wj E [(9) + (10) + (11)]

≤
∑

j

wj rj +
1
m

∑
j

wj E
[
CGipp

j

]
≤ 2 · E [opt] .

The second inequality follows from Lemma 4 and Theorem 4. Finally, the third inequality is
derived from the trivial lower bound on the optimum, E [opt] ≥

∑
j wj rj and from the bound

in Corollary 1. ut

References

1. J. L. Bruno, P. J. Downey, and G. N. Frederickson. Sequencing tasks with exponential service
times to minimize the expected flowtime or makespan. Journal of the ACM, 28:100–113, 1981.

2. D. Chazan, A. G. Konheim, and B. Weiss. A note on time sharing. Journal of Combinatorial
Theory, 5:344–369, 1968.

3. C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average
completion time scheduling. SIAM Journal on Computing, 31:146–166, 2001.

18 Megow and Vredeveld

4. M.C. Chou, H. Liu, M. Queyranne, and D. Simchi-Levi. On the asymptotic optimality of a simple
on-line algorithm for the stochastic single machine weighted completion time problem and its
extensions, 2006. Operations Research, to appear.

5. E. G. Coffman, M. Hofri, and G. Weiss. Scheduling stochastic jobs with a two point distribution
on two parallel machines. Probability in the Engineering and Informational Sciences, 3:89–116,
1989.

6. B. C. Dean. Approximation Algorithms for Stochastic Scheduling Problems. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.

7. J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society, Series B, 41:148–177, 1979.

8. J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley, New York, 1989.

9. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,
5:287–326, 1979.

10. C. C. Huang and G. Weiss. Preemptive scheduling of stochastic jobs with a two stage processing
time distribution on m + 1 parallel machines. Probability in the Engineering and Informational
Sciences, 6:171–191, 1992.

11. T. Kämpke. Optimal scheduling of jobs with exponential service times on identical parallel pro-
cessors. Operations Research, 37(1):126–133, 1989.

12. A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy paging. Algorithmica,
3:70–119, 1988.

13. A. G. Konheim. A note on time sharing with preferred customers. Probability Theory and Related
Fields, 9:112–130, 1968.

14. J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinooy Kan. Preemptive scheduling of
uniform machines subject to release dates. In W. R. Pulleyblank, editor, Progress in Combinatorial
Optimization, pages 245–261. Academic Press, New York, 1984.

15. J. K. Lenstra, A. H. G. Rinooy Kan, and P. Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:243–362, 1977.

16. N. Megow and A. S. Schulz. On-line scheduling to minimize average completion time revisited.
Operations Research Letters, 32:485–490, 2004.

17. N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online scheduling.
Mathematics of Operations Research, to appear, 2006.

18. R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems I: General
strategies. ZOR - Zeitschrift für Operations Research, 28:193–260, 1984.

19. R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems II: Set strategies.
ZOR - Zeitschrift für Operations Research, 29(3):A65–A104, 1985.

20. R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic scheduling: the power of
LP-based priority policies. Journal of the ACM, 46:924–942, 1999.

21. M. Pinedo. Stochastic scheduling with release dates and due dates. Operations Research, 31:559–
572, 1983.

22. M. Pinedo. Off-line deterministic scheduling, stochastic scheduling, and online deterministic
scheduling: A comparative overview. In J. Leung, editor, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, chapter 38. CRC Press, 2004.

23. L. Schrage. A proof of the optimality of the shortest remaining processing time discipline. Oper-
ations Research, 16:687–690, 1968.

24. A. S. Schulz. New old algorithms for stochastic scheduling. In S. Albers, R. H. Möhring, G. Ch.
Pflug, and R. Schultz, editors, Algorithms for Optimization with Incomplete Information, num-
ber 05031 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
(IBFI), Schloss Dagstuhl, Germany, 2005.

25. A. S. Schulz and M. Skutella. The power of α-points in preemptive single machine scheduling.
Journal of Scheduling, 5:121–133, 2002.

Approximation Results for Preemptive Stochastic Online Scheduling 19

26. A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized rounding. SIAM
Journal on Discrete Mathematics, 15:450–469, 2002.

27. K.C. Sevcik. Scheduling for minimum total loss using service time distributions. Journal of the
ACM, 21:65–75, 1974.

28. R. A. Sitters. Complexity and Approximation in Routing and Scheduling. PhD thesis, Technische
Universiteit Eindhoven, 2004.

29. M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints. SIAM
Journal on Computing, 34:788–802, 2005.

30. D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28:202–208, 1985.

31. W. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly,
3:59–66, 1956.

32. R. R. Weber. Scheduling jobs with stochastic processing requirements on parallel machines to
minimize makespan or flow time. Journal of Applied Probability, 19:167–182, 1982.

33. G. Weiss. On almost optimal priority rules for preemptive scheduling of stochastic jobs on parallel
machines. Advances in Applied Probability, 27:827–845, 1995.

