116 research outputs found

    PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines

    Get PDF
    PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR)

    Sulodexide counteracts endothelial dysfunction induced by metabolic or non-metabolic stresses through activation of the autophagic program

    Get PDF
    OBJECTIVE: Endothelial dysfunction (ED) predisposes to venous thrombosis (VT) and post-thrombotic syndrome (PTS), a long-term VT-related complication. Sulodexide (SDX) is a highly purified glycosaminoglycan with antithrombotic, pro-fibrinolytic and anti-inflammatory activity used in the treatment of chronic venous disease (CVD), including patients with PTS. SDX has recently obtained clinical evidence in the “extension therapy” after initial-standard anticoagulant treatment for the secondary prevention of recurrent deep vein thrombosis (DVT). Herein, we investigated how SDX counteracts ED. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVEC) were used. Metabolic and non metabolic-induced ED was induced by treating with methylglyoxal (MGO) or irradiation (IR), respectively. Bafilomycin A1 was used to inhibit autophagy. The production of reactive oxygen species (ROS), tetrazolium bromide (MTT) assay for cell viability, terminal de-oxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for cell apoptosis, Real-time PCR and Western blot analysis for gene and protein expression were used. RESULTS: SDX protected HUVEC from MGO- or IR-induced apoptosis by counteracting the activation of the intrinsic and extrinsic caspase cascades. The cytoprotective effects of SDX resulted from a reduction in a) ROS production, b) neo-synthesis and release of pro-inflammatory cytokines (TNFα, IL1, IL6, IL8), c) DNA damage induced by MGO or IR. These effects were reduced when autophagy was inhibited. CONCLUSIONS: Data herein collected indicate the ability of SDX to counteract ED induced by metabolic or non-metabolic stresses by involving the intracellular autophagy pathway. Our experience significantly increases the knowledge of the mechanisms of action of SDX against ED and supports the use of SDX in the treatment of CVD, PTS and in the secondary prevention of recurrent DVT

    Radioresistance in rhabdomyosarcomas: much more than a question of dose

    Get PDF
    Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes

    Cerebellar ataxia with sensory ganglionopathy; does autoimmunity have a role to play?

    Get PDF
    Background and purpose: Cerebellar ataxia with sensory ganglionopathy (SG) is a disabling combination of neurological dysfunction usually seen as part of some hereditary ataxias. However, patients may present with this combination without a genetic cause. Methods: We reviewed records of all patients that have been referred to the Sheffield Ataxia Centre who had neurophysiological and imaging data suggestive of SG and cerebellar ataxia respectively. We excluded patients with Friedreich's ataxia, a common cause of this combination. All patients were screened for genetic causes and underwent extensive investigations. Results: We identified 40 patients (45% males, mean age at symptom onset 53.7 ± 14.7 years) with combined cerebellar ataxia and SG. The majority of patients (40%) were initially diagnosed with cerebellar dysfunction and 30% were initially diagnosed with SG. For 30% the two diagnoses were made at the same time. The mean latency between the two diagnoses was 6.5 ± 8.9 years (range 0-44). The commonest initial manifestation was unsteadiness (77.5%) followed by patchy sensory loss (17.5%) and peripheral neuropathic pain (5%).Nineteen patients (47.5%) had gluten sensitivity, of whom 3 patients (7.5%) had biopsy proven coeliac disease. Other abnormal immunological tests were present in another 15 patients. Six patients had malignancy, which was diagnosed within 5 years of the neurological symptoms. Only 3 patients (7.5%) were classified as having a truly idiopathic combination of cerebellar ataxia with SG. Conclusion: Our case series highlights that amongst patients with the unusual combination of cerebellar ataxia and SG, immune pathogenesis plays a significant role

    Otx015 epi‐drug exerts antitumor effects in ovarian cancer cells by blocking gnl3‐mediated radioresistance mechanisms: Cellular, molecular and computational evidence

    Get PDF
    Ovarian cancer (OC) is the most aggressive gynecological tumor worldwide and, notwithstanding the increment in conventional treatments, many resistance mechanisms arise, this leading to cure failure and patient death. So, the use of novel adjuvant drugs able to counteract these pathways is urgently needed to improve patient overall survival. A growing interest is focused on epigenetic drugs for cancer therapy, such as Bromodomain and Extra‐Terminal motif inhibitors (BETi). Here, we investigate the antitumor effects of OTX015, a novel BETi, as a single agent or in combination with ionizing radiation (IR) in OC cellular models. OTX015 treatment significantly reduced tumor cell proliferation by triggering cell cycle arrest and apoptosis that were linked to nucleolar stress and DNA damage. OTX015 impaired migration capacity and potentiated IR effects by reducing the expression of different drivers of cancer resistance mechanisms, including GNL3 gene, whose expression was found to be significantly higher in OC biopsies than in normal ovarian tissues. Gene specific knocking down and computational network analysis confirmed the centrality of GNL3 in OTX015‐mediated OC antitumor effects. Altogether, our findings suggest OTX015 as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with OC

    Inhibiting DNA methylation as a strategy to enhance adipose-derived stem cells differentiation. Focus on the role of Akt/mTOR and Wnt/β-catenin pathways on adipogenesis

    Get PDF
    Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, due to their ability to repair damaged tissues and to mitigate the inflammatory/immune response. A better understanding of the underlying mechanisms regulating ASC biology might represent the chance to modulate their in vitro characteristics and differentiation potential for regenerative medicine purposes. Herein, we investigated the effects of the demethylating agent 5-azacytidine (5-aza) on proliferation, clonogenicity, migration, adipogenic differentiation and senescence of ASCs, to identify the molecular pathways involved. Through functional assays, we observed a detrimental effect of 5-aza on ASC self-renewal capacity and migration, accompanied by actin cytoskeleton reorganization, with decreased stress fibers. Conversely, 5-aza treatment enhanced ASC adipogenic differentiation, as assessed by lipid accumulation and expression of lineage-specific markers. We analyzed the involvement of the Akt/mTOR, MAPK and Wnt/beta-catenin pathways in these processes. Our results indicated impairment of Akt and ERK phosphorylation, potentially explaining the reduced cell proliferation and migration. We observed a 5-aza-mediated inhibition of the Wnt signaling pathway, this potentially explaining the pro-adipogenic effect of the drug. Finally, 5-aza treatment significantly induced ASC senescence, through upregulation of the p53/p21 axis. Our data may have important translational implications, by helping in clarifying the potential risks and advantages of using epigenetic treatment to improve ASC characteristics for cell-based clinical approaches

    Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments beta-Catenin Signaling

    Get PDF
    Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/beta-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6-9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding beta catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced beta-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wildtype RSPO1 cDNA resulted in weak dose-dependent activation of a beta-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding beta-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of beta-catenin signaling to oppose testis determination

    Calcineurin gamma catalytic subunit ppp3cc inhibition by mir-200c-3p affects apoptosis in epithelial ovarian cancer

    Get PDF
    Epithelial ovarian cancer (EOC) outpaces all the other forms of the female reproductive system malignancies. MicroRNAs have emerged as promising predictive biomarkers to therapeutic treatments as their expression might characterize the tumor stage or grade. In EOC, miR-200c is considered a master regulator of oncogenes or tumor suppressors. To investigate novel miR-200c-3p target genes involved in EOC tumorigenesis, we evaluated the association between this miRNA and the mRNA expression of several potential target genes by RNA-seq data of both 46 EOC cell lines from Cancer Cell line Encyclopedia (CCLE) and 456 EOC patient bio-specimens from The Cancer Genome Atlas (TCGA). Both analyses showed a significant anticorrelation between miR-200c-3p and the protein phosphatase 3 catalytic subunit γ of calcineurin (PPP3CC) levels involved in the apoptosis pathway. Quantitative mRNA expression analysis in patient biopsies confirmed the inverse correlation between miR-200c-3p and PPP3CC levels. In vitro regulation of PPP3CC expression through miR-200c-3p and RNA interference technology led to a concomitant modulation of BCL2- and p-AKT-related pathways, suggesting the tumor suppressive role of PPP3CC in EOC. Our results suggest that inhibition of high expression of miR-200c-3p in EOC might lead to overexpression of the tumor suppressor PPP3CC and subsequent induction of apoptosis in EOC patients

    Differential DNA Methylation Encodes Proliferation and Senescence Programs in Human Adipose-Derived Mesenchymal Stem Cells

    Get PDF
    Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5′-azacitidine (5′-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified “phagocytosis,” “type 2 diabetes,” and “metabolic pathways” as disproportionately hypomethylated, whereas “adipocyte differentiation” was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs
    corecore