14 research outputs found
Feasibility of a combined camp approach for vector control together with active case detection of visceral leishmaniasis, post kala-azar dermal leishmaniasis, tuberculosis, leprosy and malaria in Bangladesh, India and Nepal: an exploratory study
Background We assessed the feasibility and results of active case detection (ACD) of visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and other febrile diseases as well as of bednet impregnation for vector control. Methods Fever camps were organized and analyzed in twelve VL endemic villages in Bangladesh, India, and Nepal. VL, PKDL, tuberculosis, malaria and leprosy were screened among the febrile patients attending the camps, and existing bednets were impregnated with a slow release insecticide. Results Among the camp attendees one new VL case and two PKDL cases were detected in Bangladesh and one VL case in Nepal. Among suspected tuberculosis cases two were positive in India but none in the other countries. In India, two leprosy cases were found. No malaria cases were detected. Bednet impregnation coverage during fever camps was more than 80% in the three countries. Bednet impregnation led to a reduction of sandfly densities after 2 weeks by 86% and 32%, and after 4 weeks by 95% and 12% in India and Nepal respectively. The additional costs for the control programmes seem to be reasonable. Conclusion It is feasible to combine ACD camps for VL and PKDL along with other febrile diseases, and vector control with bednet impregnatio
Visceral leishmaniasis diagnosis and reporting delays as an obstacle to timely response actions in Nepal and India
Background: To eliminate visceral leishmaniasis (VL) in India and Nepal, challenges of VL diagnosis, treatment and reporting need to be identified. Recent data indicate that VL is underreported and patients face delays when seeking treatment. Moreover, VL surveillance data might not reach health authorities on time. This study quantifies delays for VL diagnosis and treatment, and analyses the duration of VL reporting from district to central health authorities in India and Nepal. Methods: A cross-sectional study conducted in 12 districts of Terai region, Nepal, and 9 districts of Bihar State, India, in 2012. Patients were interviewed in hospitals or at home using a structured questionnaire, health managers were interviewed at their work place using a semi-structured questionnaire and in-depth interviews were conducted with central level health managers. Reporting formats were evaluated. Data was analyzed using two-tailed Mann-Whitney U or Fisher’s exact test. Results: 92 VL patients having experienced 103 VL episodes and 49 district health managers were interviewed. Patients waited in Nepal 30 days (CI 18-42) before seeking health care, 3.75 times longer than in Bihar (8d; CI 4-12). Conversely, the lag time from seeking health care to receiving a VL diagnosis was 3.6x longer in Bihar (90d; CI 68-113) compared to Nepal (25d; CI 13-38). The time span between diagnosis and treatment was short in both countries. VL reporting time was in Nepal 19 days for sentinel sites and 76 days for “District Public Health Offices (DPHOs)”. In Bihar it was 28 days for “District Malaria Offices”. In Nepal, 73% of health managers entered data into computers compared to 16% in Bihar. In both countries reporting was mainly paper based and standardized formats were rarely used. Conclusions: To decrease the delay between onset of symptoms and getting a proper diagnosis and treatment the approaches in the two countries vary: In Nepal health education for seeking early treatment are needed while in Bihar the use of private and non-formal practitioners has to be discouraged. Reinforcement of VL sentinel reporting in Bihar, reorganization of DPHOs in Nepal, introduction of standardized reporting formats and electronic reporting should be conducted in both countries
Research priorities for elimination of visceral leishmaniasis
Now is a good time to reconsider research priorities as 2015 approaches, the target date originally set for elimination of visceral leishmaniasis. Visceral leishmaniasis is one of the most deadly parasitic diseases and disproportionately affects the poorest and most vulnerable populations. An estimated 200 000–400 000 people contract visceral leishmaniasis every year in developing countries. Spread by sandflies, visceral leishmaniasis can be fought with existing interventions, including treatment and vector control, but, similarly to every other human parasitic disease, no effective vaccine exists
Feasibility of a combined camp approach for vector control together with active case detection of visceral leishmaniasis, post kala-azar dermal leishmaniasis, tuberculosis, leprosy and malaria in Bangladesh, India and Nepal: an exploratory study
Background: We assessed the feasibility and results of active case detection (ACD) of visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and other febrile diseases as well as of bednet impregnation for vector control.Methods: Fever camps were organized and analyzed in twelve VL endemic villages in Bangladesh, India, and Nepal. VL, PKDL, tuberculosis, malaria and leprosy were screened among the febrile patients attending the camps, and existing bednets were impregnated with a slow release insecticide.Results: Among the camp attendees one new VL case and two PKDL cases were detected in Bangladesh and one VL case in Nepal. Among suspected tuberculosis cases two were positive in India but none in the other countries. In India, two leprosy cases were found. No malaria cases were detected. Bednet impregnation coverage during fever camps was more than 80% in the three countries. Bednet impregnation led to a reduction of sandfly densities after 2 weeks by 86% and 32%, and after 4 weeks by 95% and 12% in India and Nepal respectively. The additional costs for the control programmes seem to be reasonable.Conclusion: It is feasible to combine ACD camps for VL and PKDL along with other febrile diseases, and vector control with bednet impregnation
Active case detection in national visceral leishmaniasis elimination programs in Bangladesh, India, and Nepal: feasibility, performance and costs
Background
Active case detection (ACD) significantly contributes to early detection and treatment of visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL) cases and is cost effective. This paper evaluates the performance and feasibility of adapting ACD strategies into national programs for VL elimination in Bangladesh, India and Nepal.
Methods
The camp search and index case search strategies were piloted in 2010-11 by national programs in high and moderate endemic districts / sub-districts respectively. Researchers independently assessed the performance and feasibility of these strategies through direct observation of activities and review of records. Program costs were estimated using an ingredients costing method.
Results
Altogether 48 camps (Bangladesh-27, India-19, Nepal-2) and 81 index case searches (India-36, Nepal-45) were conducted by the health services across 50 health center areas (Bangladesh-4 Upazillas, India-9 PHCs, Nepal-37 VDCs). The mean number of new case detected per camp was 1.3 and it varied from 0.32 in India to 2.0 in Bangladesh. The cost (excluding training costs) of detecting one new VL case per camp varied from USD 22 in Bangladesh, USD 199 in Nepal to USD 320 in India. The camp search strategy detected a substantive number of new PKDL cases. The major challenges faced by the programs were inadequate preparation, time and resources spent on promoting camp awareness through IEC activities in the community. Incorrectly diagnosed splenic enlargement at camps probably due to poor clinical examination skills resulted in a high proportion of patients being subjected to rK39 testing.
Conclusion
National programs can adapt ACD strategies for detection of new VL/PKDL cases. However adequate time and resources are required for training, planning and strengthening referral services to overcome challenges faced by the programs in conducting ACD