50 research outputs found
Measurement of serum total and free prostate-specific antigen in women with colorectal carcinoma
We investigated the diagnostic value and the relationship with clinicopathological features of total and free prostate-specific antigen by measuring the concentrations of these markers in the sera of 75 women with colorectal carcinoma and in 30 healthy women. Measurements were performed by immunoradiometric assay which utilizes monoclonal and polyclonal anti-prostate-specific antigen antibodies; the lowest detection level for both markers was 0.01 ng ml−1. Free prostate-specific antigen levels were significantly higher in women with colorectal carcinoma than healthy women (P=0.006). The percentage of free prostate-specific antigen predominant (free prostate-specific antigen/total prostate-specific antigen >50%) subjects was 20% in colorectal carcinoma patients and 3.3% in healthy women (P=0.035). Cut-off values were 0.34 ng ml−1 for total prostate-specific antigen and 0.01 ng ml−1 for free prostate-specific antigen. In women with colorectal carcinoma, total prostate-specific antigen positivity was 20% and free prostate-specific antigen positivity was 34.6%. When compared to negatives, total prostate-specific antigen positive patients had a lower percentage of well-differentiated (P=0.056) and early stage (stages I and II) tumours (P=0.070). However, patients with predominant free prostate-specific antigen, had a higher percentage of well-differentiated (P=0.014) and early stage tumours (P=0.090) than patients with predominant bound prostate-specific antigen. In conclusion, although the sensitivity of free prostate-specific antigen predominancy is low (20%), in distinguishing women with colorectal carcinoma than healthy women, its specificity is high (96.7%). Free prostate-specific antigen predominancy tends to be present in less aggressive tumours. These findings may indicate clinical significance of preoperative measurement of serum total and free prostate-specific antigen in women with colorectal carcinoma
Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation
Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis
A Conserved Role for SNX9-Family Members in the Regulation of Phagosome Maturation during Engulfment of Apoptotic Cells
Clearance of apoptotic cells is of key importance during development, tissue homeostasis and wound healing in multi-cellular animals. Genetic studies in the nematode Caenorhabditis elegans have identified a set of genes involved in the early steps of cell clearance, in particular the recognition and internalization of apoptotic cells. A pathway that orchestrates the maturation of phagosomes containing ingested apoptotic cells in the worm has recently been described. However, many steps in this pathway remain elusive. Here we show that the C. elegans SNX9-family member LST-4 (lateral signaling target) and its closest mammalian orthologue SNX33 play an evolutionary conserved role during apoptotic cell corpse clearance. In lst-4 deficient worms, internalized apoptotic cells accumulated within non-acidified, DYN-1-positive but RAB-5-negative phagosomes. Genetically, we show that LST-4 functions at the same step as DYN-1 during corpse removal, upstream of the GTPase RAB-5. We further show that mammalian SNX33 rescue C. elegans lst-4 mutants and that overexpression of truncated SNX33 fragments interfered with phagosome maturation in a mammalian cell system. Taken together, our genetic and cell biological analyses suggest that LST-4 is recruited through a combined activity of DYN-1 and VPS-34 to the early phagosome membrane, where it cooperates with DYN-1 to promote recruitment/retention of RAB-5 on the early phagosomal membrane during cell corpse clearance. The functional conservation between LST-4 and SNX33 indicate that these early steps of apoptotic phagosome maturation are likely conserved through evolution
Intestinal Tumorigenesis Is Not Affected by Progesterone Signaling in Rodent Models
Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR) is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO) to the ApcMin/+ mouse, a model for spontaneous intestinal polyposis. PRKO-ApcMin/+mice exhibited no change in polyp number, size or localization compared to ApcMin/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis
Genetic variation in vitamin D-related genes and risk of colorectal cancer in African Americans
PurposeDisparities in both colorectal cancer (CRC) incidence and survival impact African Americans (AAs) more than other US ethnic groups. Because vitamin D is thought to protect against CRC and AAs have lower serum vitamin D levels, genetic variants that modulate the levels of active hormone in the tissues could explain some of the cancer health disparity. Consequently, we hypothesized that genetic variants in vitamin D-related genes are associated with CRC risk.MethodsTo test this hypothesis, we studied 39 potentially functional single-nucleotide polymorphisms (SNPs) in eight genes (CYP2R1, CYP3A4, CYP24A1, CYP27A1, CYP27B1, GC, DHCR7, and VDR) in 961 AA CRC cases and 838 healthy AA controls from Chicago and North Carolina. We tested whether SNPs are associated with CRC incidence using logistic regression models to calculate p values, odds ratios, and 95% confidence intervals. In the logistic regression, we used a log-additive genetic model and used age, gender, and percent West African ancestry, which we estimated with the program STRUCTURE, as covariates in the models.ResultsA nominally significant association was detected between CRC and the SNP rs12794714 in the vitamin D 25-hydroxylase gene CYP2R1 (p=0.019), a SNP that has previously been associated with serum vitamin D levels. Two SNPs, rs16847024 in the GC gene and rs6022990 in the CYP24A1 gene, were nominally associated with left-sided CRC (p=0.015 and p=0.018, respectively).ConclusionsOur results strongly suggest that genetic variation in vitamin D-related genes could affect CRC susceptibility in AAs. Electronic supplementary materialThe online version of this article (doi:10.1007/s10552-014-0361-y) contains supplementary material, which is available to authorized users
Mechanochemical synthesis and effect of various additives on the hydrogen absorption-desorption behavior of Na<sub>3</sub>AlH<sub>6</sub>
Sodium aluminum hydride has been extensively investigated for hydrogen storage applications whereas its intermediate decomposition compound Na3AlH6 received much less attention, despite having a lower dissociation pressure and a reasonable hydrogen storage capacity of 3.0 wt%. In this work, Na3AlH6 is synthesized through ball milling, starting from NaAlH4 and 2 NaH in the presence of TiCl3 catalyst precursor, and evaluated on its hydrogen sorption properties and cycle stability. Further addition of 8 mol% Al and 8 mol% activated carbon (AC) and their effect on both the hydrogen sorption properties and cycle stability have been investigated. In order to explore whether the introduction of the Al and AC additives would be more beneficial (in terms of hydrogen sorption behavior and cycle stability) after the Na3AlH6 synthesis or during its synthesis, pre-synthesized Na3AlH6-based measurements were also included in this work. TiCl3-catalyzed NaAlH4+2 NaH sample showed a stable reversible hydrogen storage capacity of 1.7 wt%, which was further increased to 2.1 wt% with the addition of Al-powder and activated carbon AC