195 research outputs found

    Adopting Cloud ERP in Small and Medium Enterprises: Benefits and Challenges

    Get PDF
    As wide-ranging of IT services transfer to online services in the cloud, progressively many IT managers are thinking whether to move their enterprise resource planning (ERP) systems there also. Small to Medium Enterprises of India are one of the most hostile implementers of ERP solutions. Most of the SMEs have implemented the traditional ERP Systems and have incurred a heavy cost while adopting these systems. Even though some SMEs have prospered in shifting a portion of their unconventional ERP services, for example human resources systems, into the cloud, many organizations keep on vague of undertaking the same with core supply chain and financial operations. There are a many aspects that organizations should consider in determining whether and how to use cloud-based services for their ERP systems. Industry type, company size, solution complexity, security needs, and several other organizational issues must all be addressed. In this Perspective, this paper presents the various cloud deployment and delivery models, ERP deployment models, benefits of implementing a Cloud ERP solution from scratch or a migration from an existing in-house solution to a cloud version, and challenges of moving ERP services to the cloud

    Effective use of Cloud Computing in Educational Organizations

    Get PDF
    When people discuss about the new technologies evolved in IT field, one of the technologies comes to their minds is Cloud Computing. Cloud Computing is a recent technology emerged in IT field and has been spread widely over the world. It is an internet-based computing service on-demand. One of the main uses of Cloud Computing is in the educational field. This technology helps the educational institutes to easily shift from traditional teaching methods and ways into modern and sophisticated teaching. It offers attractive advantages to higher education. This paper mainly focuses on security and usefulness of cloud computing applications in educational field. This also focus on historical view of Cloud Computing, implementation of various service models like Infrastructure as a service(IAAS), Software as a service (SAAS) and Platform as a service(PAAS) as per education institutions’ requirement. As well as it considers the challenges and barriers of cloud computing in educational field

    Biosynthesis of Menaquinone (Vitamin K2) and Ubiquinone (Coenzyme Q).

    Get PDF
    Escherichia coli and Salmonella contain the naphthoquinones menaquinone (MK; vitamin K2) and demethylmenaquinone and the benzoquinone ubiquinone (coenzyme Q; Q). Both quinones are derived from the shikimate pathway, which has been called a "metabolic tree with many branches." There are two different pathways for the biosynthesis of the naphthoquinones. The vast majority of prokaryotes, including E. coli and Salmonella, and the plants use the o-succinylbenzoate pathway, while a minority uses the futalosine pathway. The quinone nucleus of Q is derived directly from chorismate, while that of MK is derived from chorismate via isochorismate. The prenyl side chains of both quinones are from isopentenyl diphosphate formed by the 2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway and the methyl groups are from S-adenosylmethionine. In addition, MK biosynthesis requires 2-ketoglutarate and cofactors ATP, coenzyme A, and thiamine pyrophosphate. Despite the fact that both quinones originate from the shikimate pathway, there are important differences in their biosyntheses. The prenyl side chain in MK biosynthesis is introduced at the penultimate step, accompanied by decarboxylation, whereas in Q biosynthesis it is introduced at the second step, with retention of the carboxyl group. In MK biosynthesis, all the reactions of the pathway up to prenylation are carried out by soluble enzymes, whereas all the enzymes involved in Q biosynthesis except the first are membrane bound. In MK biosynthesis, the last step is a C-methylation; in Q biosynthesis, the last step is an O-methylation. In Q biosynthesis a second C-methylation and O-methylation take place in the middle part of the pathway. Despite the fact that Q and MK biosyntheses diverge at chorismate, the C-methylations in both pathways are carried out by the same methyltransferase

    Studies on the Metabolism of Allantoin by Bacteria

    Get PDF
    Microbiolog

    Regulation of the Enzymes of Purine Catabolism in Pseudomonas Aeruginosa and Neurospora Crassa

    Get PDF
    Microbiolog

    Bioremoval of diethylketone by the synergistic combination of microorganisms and clays : uptake, removal and kinetic studies

    Get PDF
    The performance of two bacteria, Arthrobacter viscosus and Streptococcus equisimilis, and the effect of the interaction of these bacteria with four different clays on the retention of diethylketone were investigated in batch experiments. The uptake, the removal percentages and the kinetics of the processes were determined. S. equisimilis,by itself, had the best performance in terms of removal percentage, for all the initial diethylketone concentrations tested: 200, 350 and 700 mg/L. The uptake values are similar for both bacteria. A possible mechanism to explain the removal of diethylketone includes its degradation by bacteria, followed by the adsorption of the intermediates/sub-products by the functional groups present on the cells surfaces. The assays performed with bacteria and clays indicated that the uptake values are similar despite of the clay used, for the same microorganism and mass of clay, but in general higher values are reached when S. equisimilis is used, compared to A. viscosus. Kinetic data were described by pseudo-first and pseudo-second order models.The authors would like to gratefully acknowledge the financial support of this project by the Fundacao para a Ciencia e Tecnologia, Ministerio da Ciencia e Tecnologia, Portugal and co-funding by FSE (programme QREN-POPH). Cristina Quintelas thanks FCT for a post-doc grant. The authors would like also to thank Minas de Barqueiros, S. A., Prof. Rui Boaventura (FEUP-Portugal) and Prof. Isabel Correia Neves (Dep Quimica, UM, Portugal) who gently offered the clays

    Kinetics of biodegradation of diethylketone by Arthrobacter viscosus

    Get PDF
    The performance of an Arthrobacter viscosus culture to remove diethylketone from aqueous solutions was evaluated. The effect of initial concentration of diethylketone on the growth of the bacteria was evaluated for the range of concentration between 0 and 4.8 g/l, aiming to evaluate a possible toxicological effect. The maximum specific growth rate achieved is 0.221 h-1 at 1.6 g/l of initial diethylketone concentration, suggesting that for higher concentrations an inhibitory effect on the growth occurs. The removal percentages obtained were approximately 88%, for all the initial concentrations tested. The kinetic parameters were estimated using four growth kinetic models for biodegradation of organic compounds available in the literature. The experimental data found is well fitted by the Haldane model (R2 = 1) as compared to Monod model (R2 = 0.99), Powell (R2 = 0.82) and Loung model (R2 = 0.95). The biodegradation of diethylketone using concentrated biomass was studied for an initial diethylketone concentration ranging from 0.8–3.9 g/l in a batch with recirculation mode of operation. The biodegradation rate found followed the pseudo-second order kinetics and the resulting kinetic parameters are reported. The removal percentages obtained were approximately 100%, for all the initial concentrations tested, suggesting that the increment on the biomass concentration allows better results in terms of removal of diethylketone. This study showed that these bacteria are very effective for the removal of diethylketone from aqueous solutions.The authors would like to gratefully acknowledge the financial support of this project by the Fundacao para a Ciencia e Tecnologia (FCT), Ministerio da Ciencia e Tecnologia, Portugal and Fundo Social Europeu (FSE). Cristina Quintelas thanks FCT for a Post-Doc grant

    Identification of a Bacteria-produced Benzisoxazole with Antibiotic Activity against Multi-drug Resistant Acinetobacter baumannii

    Get PDF
    The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml−1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole’s antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole

    Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Get PDF
    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure
    • …
    corecore