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INTRODUCTION

Facultatively anaerobic Gram-negative bacteria including Escherichia coli and Salmonella

enterica serovar Typhimurium contain the isoprenoid quinones of the benzene and

naphthalene series. The structures of these quinones are shown in Fig. 1. According to the

IUPAC-IUB recommendations (65), the benzoquinones are termed ubiquinones (Q-n)

(structure I in Fig. 1) and the naphthoquinones are termed either menaquinones (MK-n)

(structure II in Fig. 1) or demethylmenaquinones (DMK-n) (structure III in Fig. 1). The n

refers to the number of prenyl units present in the side chain. It should be pointed out that

while MK is considered a vitamin (vitamin K2), Q is not, due to the fact that vitamin-K is an

essential nutrient (can not be synthesized) by mammals, while Q is not an essential nutrient

since it can be synthesized from the aromatic amino acid tyrosine.

The major quinones in E. coli are Q-8, MK-8, and DMK-8; minor amounts of Q-1 to Q-7,

Q-9 and MK-6, MK-7, MK-9, and DMK-7 may also be present (23). The prenyl side chains

have all-trans configuration (9). In contrast to the extensive investigations on the quinone

composition and biosynthesis in E. coli, S. enterica has been studied to a lesser extent. These

organisms neither have quinones that have one or more of the prenyl residues of the side

chain reduced nor MK with more than one methyl group. Methods for the extraction,

purification, identification and analysis of the quinones have been reviewed extensively (9,

22, 27, 33, 46, 59, 83, 85, 96, 100–102, 113, 127, 128, 130, 144, 157, 160, 170).

Since the last edition of E. coli/Salmonella, the following reviews on the subject have

appeared. Reviews on the reaction mechanisms of various enzymes involved in MK and Q

biosynthetic pathways have been published by Begley (6) and Meganathan (103). Two short

reviews on Q biosynthesis have appeared (107, 152). In most of these reviews, the work on

E. coli and to a lesser extent on Salmonella predominated due to the ease with which these

organisms can be manipulated. However, due to advances in technology, it has become a

reality that work on other bacteria can be carried out with ease.
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Hence, driven by economic and chemotherapeutic potential, research in certain aspects of

the MK and Q biosynthesis in some organisms has moved ahead of that of E. coli. The MK

and the phylloquinone biosynthetic pathways (the reactions of biosynthesis are identical

except the prenylation) are unique to bacteria and plants respectively and are absent in

humans and animals. Hence, there is great commercial interest in discovering chemicals that

will inhibit the enzymes of the pathway. Such chemicals will be of use as herbicides and

chemotherapeutic agents against pathogens such as multi drug resistant Mycobacterium

tuberculosis and Methicillin-resistant Staphylococcus aureus (MRSA). With the idea of

designing drugs, the crystal structure of MenB from M. tuberculosis has been solved by two

different groups (70, 161) and that of S. aureus was recently reported (163). Hence in this

review whenever there is work on organisms that is not available in E. coli it will be

included. It is expected that the crystal structures of enzymes will be similar if not identical

in most organisms since they perform chemically identical reactions.

Most of the information concerning the biosynthesis of MK and Q was obtained with E. coli

by using isotopic tracers, by the isolation of mutants, and accumulation of intermediates and

enzyme assays. Due to space limitations, only a general account is given here; for more

information, several comprehensive reviews should be consulted (7, 8, 10, 12, 13, 53, 54,

163, 168). Both MK and Q are derived from the shikimate pathway and as such have some

common structural features. The quinone nucleus of Q is derived directly from chorismate

while that of MK is from isochorismate via chorismate. The prenyl side chain on the nucleus

of both is derived from prenyl PPi and the methyl groups are derived from S-

adenosylmethionine. In addition, MK biosynthesis requires 2-ketoglutarate and thiamine

PPi, coenzyme A and ATP as cofactors. The biosynthesis of Q under aerobic conditions has

the additional requirements for oxygen, flavoprotein, and NADH. Finally, it should be noted

that the Q biosynthetic pathway in prokaryotes differs in several respects from that of

eukaryotes (71, 103, 107, 122, 152).

In spite of the fact that both quinones originate from the shikimate pathway, there are

several important differences.

1. In the formation of the quinoid nuclei, the pathway for Q diverges at chorismate

with the loss of a pyruvoyl group, due to the action of chorismate lyase, resulting in

the formation of a benzenoid aromatic acid which is used as the framework on

which the rest of the molecule is constructed. MK biosynthesis diverges at

isochorismate by the addition of succinic semialdehyde-TPP anion derived from 2-

ketoglutarate resulting in the formation of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-

cyclohexene-1-carboxylic acid (SEPHCHC). In the subsequent reaction, the

pyruvoyl group is eliminated resulting in the prearomatic compound 2-succinyl-6-

hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC). This is then aromatized

to a benzenoid aromatic acid and used as the framework for the construction of the

rest of the molecule as shown in Fig. 2.

2. In Q biosynthesis, the prenyl side chain is introduced at an early stage (second step)

with the retention of the aromatic carboxyl group. Conversely, while in MK

biosynthesis, prenylation is the next to last step and is accompanied by a

decarboxylation.
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3. In MK biosynthesis all the enzymes in the pathway up to the prenylation are

soluble (next to the last step). In Q biosynthesis the enzymes are membrane bound

except for the first enzyme.

4. In MK biosynthesis, methylation of the carbon of the nucleus is the last step while

the terminal step of Q biosynthesis is the methylation of a hydroxyl group. In

addition, in Q biosynthesis a second O-methylation and C-methylation take place in

the middle portion of the pathway. Surprisingly, both the C-methylation involved in

MK biosynthesis and the C-methylation in Q biosynthesis are carried out by the

same C-methyltransferase.

5. Q biosynthesis under aerobic conditions requires the introduction of OH groups by

reactions involving oxygen; anaerobic Q and MK biosynthesis utilize oxygen

atoms derived from water.

MK BIOSYNTHESIS

The MK biosynthetic pathway has been elucidated on the basis of tracer experiments,

isolation of mutants blocked in the various steps, isolation and identification of

intermediates accumulated by the mutants and by enzyme assays. Early isotopic tracer

experiments with various bacteria established that methionine and prenyl PPi contribute to

the methyl and prenyl substituents of the naphthoquinone. The early isotopic tracer studies

and other work have been reviewed by Bentley and Meganathan (12). In 1964, Cox and

Gibson observed that [G-14C] shikimate was incorporated into both menaquinone and

ubiquinone by E. coli, thus providing the first evidence for the involvement of the shikimate

pathway (25). Chemical degradation of the labelled isolated menaquinone (MK-8) showed

that essentially all of the radioactivity was retained in the phthalic anhydride. It was

concluded that "the benzene ring of the naphthoquinone (sic) portion of vitamin-K2 arises

from shikimate in E. coli"; (25). The authors further suggested that shikimate was first

converted to chorismate before incorporation into MK. A more complete chemical

degradation of the menaquinone derived from labelled shikimate established that all seven

carbon atoms were incorporated (18). The remaining three carbon atoms of the

naphthoquinone ring were shown to be derived from the middle three carbons of 2-

ketoglutarate with the loss of both carboxyl groups (17, 132, 133).

These studies established the immediate precursors of menaquinone as shikimate and the

noncarboxyl carbon atoms of 2-ketoglutarate forming the naphthoquinone nucleus. The

methyl and isoprenoid side chains were also shown to be derived from S-

adenosylmethionine and an isoprenyl alcohol pyrophosphate ester, respectively.

Subsequently it was shown that the benzenoid aromatic compound o-succinylbenzoate

(OSB) (29) and the naphthalenoid aromatic compound 1,4-dihydroxy-2-naphthoate (DHNA)

(12, 134) were incorporated into the naphthoquinone ring of menaquinone. This work was

confirmed by the demonstration that menB and menA mutants of E. coli excrete OSB and

DHNA, respectively, into the culture medium (173). During a study of the biosynthesis of

OSB by growing cultures of E. coli menB it was demonstrated that carbon atom one of the

glutamate (2-ketoglutarate) was lost and consequently not incorporated into OSB (108). The

isotopic labeling pattern is summarized in Fig. 3.
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Formation of isochorismate (Compound IV -------> V)

The first synthesis of OSB (IX), from chorismate (IV) and 2-ketoglutarate in the presence of

TPP by cell-free extracts of E. coli was obtained by Meganathan (105) (Fig. 4). However, it

had been suggested that isochorismate (V) was a much more attractive precursor than

chorismate on chemical grounds (29, 53). Evidence in support of this hypothesis was

provided (11, 36, 167).

Isochorismate is a common intermediate in the biosynthesis of the siderophore enterobactin

and MK. The conversion of chorismate to isochorismate in enterobactin biosynthesis is

mediated by the enzyme isochorismate synthase encoded by the entC gene (119, 162). The

dual role of isochorismate led to the question as to whether the entC encoded isochorismate

synthase (EntC) was supplying the isochorismate required for both pathways. Kaiser and

Leistner (72) reported the isolation of a Tn10 insertion in the entC gene that had lost

simultaneously the ability to form enterobactin and MK. It is generally accepted that the

entC gene is derepressed under iron deficiency and repressed under iron sufficiency (47,

116). Enterobactin is required only under aerobic conditions due to the poor solubility and

the consequent unavailability of iron in the Fe3+ form. When E. coli is grown anaerobically,

iron is present in the highly soluble Fe2+ form. Hence, the synthesis of enterobactin is

unnecessary for the acquisition of iron by the cell under anaerobic conditions (47, 116).

In contrast, MK is required under anaerobic conditions (12). Further, when the organism is

grown with fumarate, trimethylamine-N-oxide (TMAO) or dimethylsulfoxide (DMSO) as

electron acceptor, the presence of MK is obligatory (12, 48, 106, 112). When oxygen or

nitrate are the electron acceptors, the aerobic quinone, ubiquinone is used by E. coli (84).

Thus, while the conditions that favor the biosynthesis and function of Q are compatible with

the biosynthesis of enterobactin, they are incompatible with the biosynthesis of MK.

These apparent contradictions raised some intriguing questions. How does E. coli, growing

aerobically under iron deficiency when entC is fully derepressed, prevent the synthesis of

MK? Further, under anaerobic conditions, how does E. coli prevent the synthesis of

enterobactin when MK synthesis is induced? This paradox might be resolved if the entC

gene is regulated by iron in the presence of oxygen and by MK requirement in the absence

of oxygen. To study the regulation of the entC gene, an entC-lacZ operon fusion was

constructed and the expression of β-galactosidase monitored under various conditions. It was

found that the β-galactosidase was fully derepressed at low concentration of iron and

repressed at high iron concentrations under both aerobic and anaerobic growth conditions

(91, 93).

These results raised the question as to how E. coli is able to synthesize MK anaerobically

when growing in the presence of high concentrations of iron? How does the organism

prevent the excess production of MK under iron deficient aerobic conditions when entC is

fully derepressed? To answer these questions, anaerobic growth of an entC::Tn5 mutant was

tested on glycerol medium with TMAO, DMSO or fumarate as electron acceptors. The

mutant was able to grow at the same rate as the parent, even in the presence of high

concentrations of iron. Further, the mutant produced as much MK as the parent (91, 93,

104). These results provided clear evidence for the presence of an alternate isochorismate
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synthase specifically involved in MK biosynthesis. As a first step in locating and identifying

the gene encoding this alternate isochorismate synthase involved in MK biosynthesis,

further sequencing upstream of the 5′ region of the menD gene was carried out. An open

reading frame encoding a 430 amino acid protein exhibiting about 20% amino acid identity

with EntC was identified as MenF (30, 31, 91).

The isochorismate synthase (MenF) encoded by the menF gene has been overexpressed and

purified to homogeneity. The purified enzyme had a relative Mr of 48, 000 (30, 31) as

determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native Mr, as

determined by gel filtration chromatography, was 98, 000, thus establishing that the native

enzyme is a homodimer (30). The enzyme showed a requirement for Mg2+ for maximal

activity.

It is expected that the origin of the hydroxyl groups and the mechanism of the reaction of

MenF and EntC will be identical. Four different mechanisms were proposed for the EntC

enzyme (165). The origin of the hydroxyl could be from three possible sources: 1).

molecular oxygen, 2). intramolecular transfer of the hydroxyl, or 3). from the solvent H2O.

While the incorporation of molecular oxygen is possible only in the case of aerobic

organisms intramolecular transfer or the incorporation of hydroxyl from water can be carried

out by both aerobes and anaerobes. Due to the reported absolute requirement of enterobactin

for the chelation of iron during aerobic growth under iron deficiency (47, 116) one would

expect the incorporation of molecular oxygen into the hydroxyl group. However, the

absence of redox cofactor rules out the involvement of oxygen and evidence has been

obtained demonstrating the incorporation of the C-6 hydroxyl from the solvent H2O for

EntC (165). Consistent with this result is the demonstration of anaerobic biosynthesis of

enterobactin in E. coli (91).

Recently, the 3D structure of MenF has been determined and the catalytic mechanism

probed by site directed mutagenesis and biochemical studies (80). Lys 190 has been

identified as the active site base that assists in the attack by water at the C2 carbon. An SN2"

reaction results in the rearrangement of 1–2, 5–6 double bonds resulting in the elimination of

the C4 hydroxyl group (80). These findings are in complete agreement with a common

mechanism proposed for the three chorismate-utilizing enzymes, anthranilate synthase (AS),

4-amino-4-deoxychorismate synthase (ADCS) and isochorismate synthase (IS) by He et al

(55).

Formation of succinic semialdehyde-TPP (SS-TPP) anion and Michael addition to
isochorismate (compound VI+V------>VIII)

During the studies on the biosynthesis of o-succinylbenzoate (OSB) (IX), cell extracts of

two groups of mutants designated as menC and menD blocked in the formation of OSB and

requiring OSB for anaerobic growth on glycerol-fumarate medium were examined. Cell

extracts of either mutant alone did not form OSB from chorismate (IV) and 2-ketoglutarate

in the presence of thiamin pyrophosphate. However, extracts from both mutants in

combination produced OSB, and extracts of menC mutants accumulated an intermediate,

which was converted to OSB by extracts of menD mutants (110). The intermediate was

found to be unstable, and on mild acid treatment yielded OSB and succinylbenzene. On the

Meganathan and Kwon Page 5

Ecosal Plus. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



basis of these properties and nuclear magnetic resonance data, the intermediate was

identified as 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) (VIII) (36).

It has been postulated that the 2-ketoglutarate undergoes a TPP-dependent decarboxylation,

with the formation of succinic semialdehyde anion of TPP (VI) (17, 105) and a requirement

for TPP in the reaction was shown (110). The mechanism of decarboxylation is identical to

that catalyzed by the first enzyme of the 2-ketoglutarate dehydrogenase complex (KGDH

complex) (Fig. 5)(11, 99). Using a sucA mutant, (which lacks the first enzyme of the KGDH

complex), and by selective removal of the KGDH complex it was established that the 2-

ketoglutarate decarboxylase (KDC) involved in OSB synthesis is a separate enzyme (13, 99,

167).

Subsequent studies established that the succinic semialdehyde anion (VI) of TPP reacted

with isochorismate (V) resulting in the formation of SHCHC (VIII) (11, 36, 167) as had

been postulated previously (29, 53). A mechanism for this reaction has been proposed (Fig.

5) (10, 11, 103). When the complete nucleotide sequence of the menD gene was determined

it was discovered that both SHCHC synthase and KDC activities are encoded by a single

gene (120). This conclusion was further strengthened by overexpression and purification of

the MenD protein and by showing that both activities co-purified during various steps of the

purification process (14, 89).

However, recently, Guo and colleagues have shown that the formation of SHCHC from

isochorismate and 2-ketoglutarate is a two step process requiring two different enzymes. The

first enzyme MenD decarboxylates the 2-ketoglutarate and adds the resulting succinic

semialdehyde anion of TPP (VI) to isochorismate (V) resulting in the formation of 2-

succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) (VII) (67).

The mechanism of formation of succinic semialdehyde anion of TPP and its addition to

isochorismate is shown in Fig. 5. The stereochemistry of SEPHCHC was determined and

shown to be (1R, 2S, 5S, 6S)-2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1--

carboxylic acid (68). On the basis of these results, MenD was designated as SEPHCHC

synthase (67).

SEPHCHC is an unstable compound which, in mildly basic solutions, spontaneously

undergoes a 2, 5 elimination reaction resulting in the formation SHCHC and pyruvate.

Crystallization and a preliminary X-ray analysis of MenD has been reported (148)

The in vivo conversion of SEPHCHC to SHCHC (compound VII to VIII) is carried out by

(1R, 6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase

encoded by the menH gene (Fig. 4 and 5). Surprisingly, MenH contains a Ser-His-Asp

catalytic triad, which is typical of many proteases. This triad plays a critical role in enzyme

activity since replacing any one of the three amino acids by alanine results in a dramatic

decrease in catalytic activity (69). The structure of MenH from the enteric pathogen Vibrio

cholerae has been determined (Pdb# IR3D).
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The aromatization of SHCHC----->OSB (Compound VIII-------->IX)

Enzymatic removal of the elements of water from SHCHC (VIII) leads to the formation of

the benzenoid aromatic compound OSB (IX) (Fig. 4). The first evidence for the presence of

such an enzyme was obtained by the demonstration that cell free extracts of a menD mutant

converted SHCHC (designated as “X” at the time) to OSB (110). This enzyme was

subsequently designated as OSB synthase (126, 141). The gene encoding OSB synthase was

cloned and its complete nucleotide sequence reported (141).

The enzyme was overexpressed, purified to homogeneity and its properties investigated. The

enzyme required a divalent metal ion for activity like the other members of the enolase

superfamily. The enzyme was shown to carry out the dehydration of SHCHC to OSB very

efficiently with Kcat of (19±1s−1) and a Kcat/Km of (1.6 ±0.3×106M−1s−1) (121). OSB

synthase was classified as a member of the enolase superfamily. Members of this

superfamily carry out reactions initiated by abstraction of the α-proton from a carboxylate

anion substrate to generate a stabilized enolate anion intermediate (3). As pointed out above,

the reaction catalyzed by OSB synthase is a dehydration. It was proposed that the α-proton

of the carboxylate substrate (SHCHC) is likely abstracted by a basic catalyst (one lysine)

followed by the elimination of the β-hydroxyl group presumably by the assistance of an acid

catalyst (a second lysine) (121).

The structure of OSB synthase from E. coli in complex with Mg2+ and o-succinylbenzoate

was determined. It was found that OSB synthase is the only monomeric member of the

enolase superfamily. The product OSB was found to be sandwiched between Lys 133 and

Lys 235 located at the ends of the second and sixth β-strands. In addition, one carboxylate

oxygen of the substrate is coordinated to the Mg2+ (159). Subsequently, the structure of

OSB synthase from an inactive K133R mutant in complex with the substrate SHCHC was

determined. It was found that Lys 133 is the single base/acid catalyst for the dehydration

with the transient Mg2+ coordinated enolate anion intermediate. The dehydration was shown

to follow a syn-stereochemical course (74). The mechanism and specificity of various

members of the enolase superfamily including OSB synthase have been reviewed and

should be consulted for further details of the reaction mechanism (42).

Cyclization of OSB to DHNA (Compound IX ---------> XII)

The conversion of the benzenoid aromatic compound OSB (IX) to the naphthalenoid

aromatic compound 1,4-dihydroxy-2-naphthoate (DHNA) (XII), was demonstrated by

Bryant and Bentley (16). The process showed an absolute requirement for ATP and CoA.

Hence, OSB-CoA (X) was suggested as an intermediate. Using extracts of Mycobacterium

phlei, evidence was obtained for the presence of two enzymatic activities (OSB-CoA

synthetase and DHNA synthase). The OSB-CoA was found to be an unstable intermediate,

which spontaneously hydrolyzed to the spirodilactone form of OSB (Fig. 6, compound

XIX). Further, it was shown that during the formation of OSB-CoA, ATP was hydrolyzed to

AMP and PPi, which is typical of ligases forming CoA esters (109).
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The CoA moiety was suggested to be on the aromatic carboxyl group (16, 109) and evidence

in support of this suggestion was obtained (56, 57). However, in subsequent publications, it

was reported that the CoA is located on the aliphatic carboxyl group (81, 82).

A group of E. coli mutants responding to DHNA (XII), but not to OSB (IX) for anaerobic

growth on glycerol-fumarate medium was analyzed for their ability to convert OSB to

DHNA (143). None of the mutant extracts formed DHNA. However, when the cell extracts

from different mutants were mixed with each other, one of the mutant extracts

complemented with extracts of each one of the other three mutants and formed DHNA. To

identify the nature of the enzymatic defect in these mutants, cell extracts from each one of

these mutants were complemented with OSB-CoA synthetase and DHNA synthase from M.

phlei described above, and assayed for DHNA formation. The single mutant whose extract

was complemented by OSB-CoA synthetase, and therefore, lacking this enzyme was

designated as menE. The other three mutants, whose extracts were complemented by DHNA

synthase were designated as menB (143).

The menE gene was cloned and sequenced (140). The gene was overexpressed and the

enzyme purified to homogeneity. The purified enzyme had subunits of Mr 49,000 and a

native Mr of 185,000. Thus, the native enzyme appears to be a homotetramer. The Km values

for OSB, ATP and CoA were 16, 73.5, and 360 µM, respectively (88). By chemical

inactivation and site directed mutagenesis studies, an essential histidine residue (His341)

located in the ATP binding region has been identified as necessary for catalytic activity of

the enzyme (15). Sequence analysis combined with the fact that OSB-CoA synthetase

hydrolyses ATP to AMP and PPi and requires CoASH for the reaction earns it membership

in the acyl-adenylate/thioester forming superfamily of enzymes (19, 20). A mechanism for

the reaction has been proposed (Fig. 6).

The menB gene was cloned and its complete nucleotide sequence determined (142). When

the gene was overexpressed and the protein purified to homogeneity, the subunits were

found to have a Mr of 32,000, while the native protein had a Mr 112,000 as determined by

gel filtration. Thus, the enzyme is a homotetramer (103).

As discussed above, the substrate for MenB, OSB-CoA is highly unstable. Hence, for the

assay of MenB, the required OSB-CoA is generated in vitro by coupling the reaction with

the MenE reaction (12, 109). However, for the coupled assays, crude cell-free extracts were

always used. Surprisingly, when the overexpressed and purified MenE and MenB enzymes

were used in the coupled assay, DHNA formation was not observed. In order to determine

the reasons for the lack of formation of DHNA, small amounts of a crude cell-free extract of

E. coli were added to the reaction mixture, and this resulted in the restoration of activity in

the incubation mixture. Hence it appeared that either a cofactor or another protein might be

involved in the reaction.

On the basis of alignment and analysis of the sequence MenB was included in the enoyl-

CoA hydratase/isomerase (crotonase) superfamily (172). The failure of the purified MenB to

form DHNA in the complementation assay discussed above and its membership in the

enoyl-CoA hydratase superfamily (where other members form CoA esters) it was suggested
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that the product of MenB is DHNA-CoA (XI) rather than DHNA (XII) (103). Evidence in

support of this prediction has been obtained in Mycobacterium tuberculosis where the

product of MenB was identified by mass spectrometry as DHNA-CoA (XI) (161). The

crystal structure of MenB as the native enzyme and in complex with acetoacetyl-CoA and

DHNA-CoA respectively has been reported by Truglio et al. (161) and Johnston et al. (70).

The highly conserved active site of MenB contained a deep pocket lined with Asp-192,

Tyr-287 and hydrophobic amino acids. Site directed mutagenesis studies have established

that Asp-192 and Tyr-287 are essential for enzymatic catalysis. On the basis of structural

and mutagenesis studies, the authors have proposed a possible mechanism for cyclization of

OSB-CoA to DHNA-CoA (161).

On the basis of amino acid sequence homology to thioesterases, an unidentified orf152

(yfbB) was postulated to carry out the conversion of DHNA-CoA → DHNA and designated

as menH (103, 121). Evidence in support of the proposal was provided by experimental

demonstration of thioesterase activity of the protein (86).

However, as discussed above (section ___), the MenH protein has been unequivocally

demonstrated to carry out the conversion of newly discovered intermediate SEPHCHC to

SHCHC and has been christened as SHCHC synthase (69). Thus, the enzyme responsible for

the conversion of DHNA-CoA to DHNA remains to be identified.

Prenylation of DHNA to DMK (Compound XII-------->III)

The conversion of DHNA (XII) to DMK (III) in extracts of E. coli, was shown by Bentley

(8). Shineberg and Young (146) were able to isolate a membrane-bound 1,4-dihydroxy-2-

octaprenyltransferase. The menA gene encoding the enzyme has been cloned (155). The

enzyme (MenA) has many features in common with 4-hydroxybenzoate

octaprenyltransferase (UbiA) involved in the biosynthesis of ubiquinone. The two enzymes

share a common pool of membrane bound octaprenyl diphosphate (146). The conversion of

DHNA to DMK requires replacement of the carboxyl with the isoprenoid side chain.

Prenylation and decarboxylation may occur in a single active site, since symmetry

experiments exclude 1,4-naphthoquinone as an intermediate (4). Moreover, there has been

no evidence for two separate reaction steps or enzymes. A carbocation mechanism based on

the dimethylallyl tryptophan synthase reaction (40) has been proposed for the reaction (103).

In addition, a quinol to quinone oxidation is required in which demethylmenaquinol is a

likely intermediate; the oxidation to DMK is thought to be spontaneous.

Methylation of DMK to MK (Compound III--------->II)

DMK (III) is methylated to MK (II) by a methyltransferase, which uses S-

adenosylmethionine as the methyl donor. In experiments with whole cells it was shown that

all three hydrogen atoms of the methyl group of methionine are transferred to DMK (66).

The conversion of DMK-3 to MK-3 was demonstrated in cell extracts using S-[14CH3]-

adenosyl-L-methionine by Bryant and Bentley(16). An ubiA mutant of E. coli was found to

accumulate DMK but not MK. This mutant is believed to be defective in methylation of

DMK to MK, suggesting that this is a double mutant (35). In a subsequent study, it was

shown that an ubiE mutant, blocked in the methylation of the ubiquinone biosynthetic
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intermediate, 2-octaprenyl-6-methoxy-1,4-benzoquinol (OMB) (XXV) to 2-octaprenyl-3-

methyl-6-methoxy-1,4-benzoquinol (OMMB) (XXVI) (174) accumulated DMK but not MK

(171). Consistent with this observation is the simultaneous loss of C-methyltranferase

activity towards both OMB and DMK and its restoration by a plasmid containing the ubiE

gene (95, 171).

Q BIOSYNTHESIS

The ubiquinone biosynthetic pathway was elucidated largely due to the work of Gibson,

Cox, Young and colleagues (45, 46). In 1964, it was observed by Cox and Gibson that

[G-14C]-shikimate was incorporated into ubiquinone, thus establishing that the quinone was

derived from the shikimate pathway (25). Gibson and colleagues reasoned that since

ubiquinone is required for aerobic electron transport, mutants deficient in its biosynthesis

would grow fermentatively on glucose, but not aerobically on oxidizable substrates such as

malate or succinate, as the sole source of carbon and energy. Mutagenized cultures were

screened for the desired phenotype and potential mutants were analyzed for the presence or

absence of ubiquinone (45). Using this procedure, a number of mutants were isolated and it

was found that these mutants accumulated sufficient amounts of intermediates so that their

structure could be determined by mass spectrometry and magnetic resonance spectrometry

(45, 154).

The biosynthesis of the quinonoid ring and the various ring modification reactions in E. coli

have been reviewed (71, 73, 104, 152). A mechanistic perspective on the various reactions

has been provided (6, 103). As pointed out in the introduction, in E. coli and Salmonella, the

first committed step in the biosynthesis of Q is the formation of 4-hydroxybenzoate from

chorismate by the cytoplasmic enzyme chorismate lyase. The 4-hydroxybenzoate formed is

attached to the membrane bound octaprenyl diphosphate by a membrane bound

octaprenyltransferase. For the subsequent reactions, all the substrates and enzymes are in a

membrane bound complex. In this chapter, the intermediates, genes and enzymes involved

in the various reactions are presented first. This will be followed by a brief description of the

membrane bound multienzyme complex and the reported interactions of certain enzymes in

the complex with each other.

Conversion of chorismate to 4-hydroxybenzoate (Compound IV--------->XX)

The elimination of pyruvate from chorismate (IV), results in the formation of 4-

hydroxybenzoate (4-HB) (XX) (Fig. 7). This aromatizing reaction is the first committed step

in the biosynthesis of Q and is catalyzed by the enzyme, chorismate lyase, encoded by the

ubiC gene (94). The ubiC gene has been cloned; the enzyme was overexpressed and purified

to homogeneity. The UbiC is a monomer of 165 amino acids from which the N-terminal

methionine is post-translationally removed resulting in the functional enzyme. The enzyme

has a molecular weight of 18.645 Da and functions as a monomer. The Km was reported to

be around 6–10 µM (117, 147). The purified enzyme failed to accept isochorismate as a

substrate, but did convert 4-amino-4-deoxychorismate to 4-aminobenzoate (117). Thus, it

appears that the enzyme is unable to distinguish between the hydroxyl group and the amino

group at the C-4 position. Walsh et al. (165) have proposed a 1,2-elimination of the

elements of pyruvate for the aromatization similar to that of anthranilate synthase reaction.
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The C-4 H of chorismate is abstracted by the enzyme and loss of the C-3-enolpyruvyl group

then results in the formation of the 4-hydroxybenzoate (4-HB). It has been reported that the

enzyme was inhibited by 4-HB but not pyruvate (147). In a subsequent study, Holden et al.

circumvented the rapid influence of product inhibition on the initial reaction rate by using

progress curve analysis of stopped-flow kinetic measurements. Under these conditions the

Km increased by about 3-fold to 29 µM (60). The enzyme releases the pyruvate quickly and

retains the 4-HB with a 10-fold higher affinity (Kp = 2.1 µM) (39).

The crystal structure of UbiC protein has been solved. The wild type enzyme tended to

aggregate and precipitate even in the presence of reducing agents and salt. To circumvent

this problem, two surface-accessible cysteines at sequence positions 14 and 81 were

converted by site directed mutagenesis into serine. This mutant enzyme C14S/C81S,

designated as CCSS, showed greatly improved solubility and stability with minimal effect

on the catalytic properties (60). The crystal structure of the enzyme from the double mutant

at 1.4-Å and the wild-type enzyme at 2.0-Å in complex with the product, 4-HB was

determined. The core of the chorismate lyase consisted of 6-stranded antiparallel β-sheet

without spanning helices and novel connectivity. The product, 4-HB was shown to be bound

in an internal cavity behind two flaps which completely covers and shields the product from

the solvent. Three hydrogen bonds link the product to the internally charged side chains of

Arg76 and Glu155 and two additional hydrogen bonds link it to the flap atoms 34 N and

114N. These five hydrogen bonds play a direct role in binding the product. There are three

additional hydrogen bonds that link the flaps together and further enhance product retention

(150).

To further clarify and understand the unusual ligand binding and the mechanism of reaction

additional structures of mutant enzymes, enzyme inhibitor complexes and mutant enzyme

inhibitor complexes were studied. When a high resolution crystal structure (1.0 Å) of the

enzyme substrate complex was examined, a substrate sized internal cavity was found behind

flaps near the product binding site. The crystal structure (2.4 Å) of the enzyme complexed

with the inhibitor vanillate showed that the flaps were partly opened when compared to the

product bound enzyme.

An active site mutant enzyme G90A complexed with the product was examined at a

resolution of 2.0 Å. It was found that the presence of the additional methyl group in the

mutant enzyme resulted in the enlargement of the 4-HB binding pocket by about 1 Å.

However, all the 8-hydrogen bonds involved in product binding in the wild-type enzyme are

maintained. When the kinetic properties of the mutant enzyme were compared with the

wild-type enzyme it was found that the product inhibition increased by about 40%. The

wild-type enzyme had a Kp-value of 1.5 (±0.2) µM versus 0.9 (±0.1) µM for the mutant. The

increase in product inhibition in the mutant is attributed to the presence of the additional

methyl group acquired in the conversion of glycine to alanine. The Km values did not

change while the Kcat value of the mutant decreased to 0.9 (±04.)S−1 from 1.4 (±0.2)S−1.

When the G90A mutant enzyme was bound with the inhibitor vanillate, the structure at 1.9

Å showed two vanillate molecules. One of the vanillate molecules occupied the product site

normally occupied by 4-HB and the second molecule of vanillate occupied an adjacent site
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or cavity. The two sites were found to be connected by a tunnel that is open partly on both

ends. The product binding site was designated as the primary ligand site and the adjacent

site (additional site) where the second vanillate molecule binds was designated as the

secondary ligand site (150). On the basis of structural studies summarized above in

combination with molecular modeling, molecular dynamics and binding measurements with

inhibitors, a model has been proposed to account for catalytic, product binding, and product

release mechanisms.

It has been proposed that the enzyme operates by a two site or tunnel mechanism (150).

According to this mechanism, the enzyme contains bound 4-HB in the primary site

(designated as primary ligand site 1°). When the substrate binds to the second site

(designated as secondary ligand site 2°), it promotes the release of the product from the

primary site. As the product 4-HB is released from the primary site, the substrate chorismate

moves to the primary site. In the primary site the substrate is unstable and it is rapidly

converted to the products 4-HB and pyruvate. Since pyruvate is small, it exits rapidly from

the primary site while the 4-HB is retained in the bound state and the process is repeated in a

cyclic manner.

Prenylation of 4-hydroxybenzoate (Compound XX-------->XXI)

The prenylation of 4-hydroxybenzoate (XX) to 3-octaprenyl-4-hydroxybenzoate (XXI) is
carried out by the enzyme 4-hydroxybenzoate octaprenyltransferase encoded by the ubiA

gene. The enzyme is membrane bound and requires octaprenyl diphosphate and Mg2+ (175).

In addition to octaprenyl diphosphate, the enzyme could incorporate geranyl, farnesyl,

phytyl, or solanesyl diphosphate as a side chain precursor (35, 111). This lack of specificity

also extends to the aromatic substrate; thus, 4-aminobenzoate can replace 4-

hydroxybenzoate as a substrate (35). Recently, it has been shown that the enzyme accepts a

wide variety of benzoic acid derivatives as substrates. As already mentioned, replacing the

C-4 hydroxyl with an amino group did not affect reactivity. However, replacing the

hydroxyl with a methoxy group was not tolerated. Compounds substituted at C-5 with OH,

NH2, Cl, or CO-CH3 groups were used as substrates by the enzyme. Similarly, compounds

with hydroxyl groups at C-4, C-5 and C-6 or hydroxyl group at C-4, C-6 and methyl group

at C-5 were substrates (169).

The prenyl transfer reactions are electrophilic substitution reactions. The reaction

mechanism probably includes a carbocation (43); evidence for this proposal comes from

studies on the related enzyme dimethylallyltryptophan synthase (40).

Formation of 2-octaprenylphenol (Compound XXI -------->XXII)

The conversion of 3-octaprenyl-4-hydroxybenzoate (XXI) to 2-octaprenylphenol (XXII)
was demonstrated by Cox et al. (26). The enzyme responsible for this conversion was

named 3-octaprenyl-4-hydroxybenzoate decarboxylase. The presence of decarboxylase was

also observed by El Hachimi et al. (35). The enzyme activity was absent in ubiD mutants

(26).
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When cell extracts were prepared using a French press, centrifuged at 30,000×g, and the

supernatant further centrifuged at 150,000×g for 3 hrs, most of the activity remained in the

soluble fraction, establishing that the enzyme separated from the membrane. A 24-fold

purified preparation of the enzyme was obtained. The molecular weight of the enzyme was

reported to be Mr 340,000 (98). For optimal activity, the enzyme required Mn2+, washed

membranes or an extract of phospholipids, and an unidentified heat stable factor of

molecular weight less than 10,000. The reaction was strongly stimulated by dithiothreitol

and methanol. Since the substrate of the enzyme 3-octaprenyl-4-hydroxybenzoate is

membrane bound and the enzyme is stimulated by phospholipid, it has been suggested that

the enzyme normally functions in association with the cytoplasmic membrane in vivo (98).

A reaction mechanism has been suggested (6, 103).

A number of ubiD mutants studied form about 20% of the wild type levels of Q, indicating

that the mutants are leaky or there is an alternate enzyme for the reaction. However, the

significance of any alternate carboxy-lyase in wild type strains has been questioned (98).

An alternate 3-octaprenyl-4-hydroxybenzoate decarboxylase encoded by the ubiX gene has

been described in S. typhimurium which carries out the same reaction as the ubiD encoded

enzyme (61). An ubiX gene showing 70% homology to the S. typhimurium gene has been

identified in E. coli (118, 177). The orf′s encoding the two enzymes UbiD and UbiX have

been identified from E. coli (178). Recently, a report has appeared suggesting that both

UbiD and UbiX are required for the decarboxylation of 3-octaprenyl-4-hydroxybenzoate

particularly during logarithmic phase of growth (49).

It has been reported that several E. coli strains including the enterohaemorrhagic O157:H7

contain in addition to UbiX a second paralog designated as Pad1. The amino acid sequence

of this paralog was reported to have a 52% identity to UbiX and a slightly higher identity to

S. cerevisiae phenylacrylic acid decarboxylase Pad1. The exact biochemical role of E. coli

Pad remains to be determined (129).

Hydroxylation and methylation reactions

In the subsequent steps of the pathway, the 2-octaprenylphenol undergoes three

hydroxylation reactions alternating with three methylation reactions resulting in the

formation of ubiquinol (XXVIII) and then Q (I). For convenience, the hydroxylation

reactions are considered together and this will be followed by a description of the three

methylation reactions.

1. Hydroxylation reactions—Three flavin linked monooxygenases are involved in the

three hydroxylation reactions of the pathway with three hydroxyl groups being introduced at

positions C-6, C-4 and C-5 of the benzene nucleus, respectively. The three reactions are:

1. 2-octaprenylphenol (XXII) → 2-octaprenyl-6-hydroxyphenol (XXIII),

2. 2-octaprenyl-6-methoxyphenol (XXIV) → 2-octaprenyl-6-methoxy-1,4-

benzoquinol (XXV)
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3. 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol (XXVI) → 2-octaprenyl-3-

methyl-5-hydroxy-6-methoxy-1,4-benzoquinol (XXVII).

Mutants blocked in each of these hydroxylation reactions were isolated and designated as

ubiB, ubiH, and ubiF, respectively.

Consistent with their metabolic block, ubiB mutants accumulate 2-octaprenylphenol (XXII)
(26, 176). However, the predicted product of the UbiB reaction (XXIII) has never been

isolated and characterized and it may not occur as a free intermediate (2, 176).

As part of the genome project, when the sequence was annotated, ubiB was considered

identical to that of fre and luxG (28). In subsequent studies, an orf previously designated

yigR was identified as ubiB. An insertion mutant was isolated and was shown to accumulate

the expected intermediate in the pathway, 2-octaprenylphenol (compound XXII). As

mentioned above, the expected product of the reaction 2-octaprenyl-6-hydroxyphenol

(XXIII) could not be isolated (125).

Mutants blocked in the methylation of 2-octaprenyl-6-hydroxyphenol (XXIII) to 2-

octaprenyl-6-methoxyphenol (XXIV) have been isolated (ubiG::kan) (see methylation

reactions below). However, surprisingly, these mutants also failed to accumulate the

expected intermediate before the block 2-octaprenyl-6-hydroxyphenol (XXIII) thus

supporting the suggestion that it may not occur as a free intermediate (2, 176).

Mutants unable to convert (XXIV) to (XXV) have been isolated with the gene being

designated as ubiH (176). The ubiH gene is identical to the visB gene and confers a

photosensitive phenotype due to the accumulation of (XXIV) (115).

The final hydroxylation in Q biosynthesis is the conversion of (XXVI) to (XXVII) and

mutants blocked in the reaction were isolated and characterized. As expected, these mutants,

designated as ubiF, accumulated (XXVI) which was isolated and identified (174). The ubiF

gene was identified as orf391 and the product accumulated by insertion mutants in this orf

was found to be (XXVI) (92).

Under aerobic conditions, the origin of the oxygen atoms of Q was determined by 18O

labeling experiments. Cultures were grown on the oxidizable carbon source succinate, under

strictly aerobic conditions in a defined atmosphere of 18O2. The Q was isolated from these

cultures and subjected to mass spectral analysis. The spectrum showed several prominent

peaks with m/z values differing from that of normal Q by +6 establishing that 18O had been

incorporated. Further, it was demonstrated that the 18O was incorporated at positions 4, 5,

and 6 (2).

The nature of the hydroxylation reactions discussed above has been investigated. A hemA

mutant defective in the biosynthesis of cytochromes was able to convert 2-octaprenyl-[14C]

phenol to 14C-labeled Q-8, ruling out the involvement of the cytochrome P-450

monooxygenase system, and suggesting the involvement of flavin linked monooxygenases

in these reactions (75). A mechanism analogous to that proposed for the flavin dependent

tyrosine hydroxylase (166) has been suggested by Begley et al.(6).
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When grown anaerobically, with glycerol as a carbon source and fumarate as an electron

acceptor, E. coli forms considerable quantities of Q (50–70% of aerobically grown cells).

Mutants blocked in the various non-hydroxylating reactions of the pathway such as ubiA,

ubiD and ubiE, remain Q deficient under both aerobic and anaerobic conditions, establishing

that the same genes and enzymes participate under both aerobic and anaerobic conditions

(1).

In contrast, the three groups of mutants blocked in the three oxygenases discussed above,

ubiB, ubiH, and ubiF, were able to synthesize Q under anaerobic conditions providing

evidence that specific hydroxylases are involved in the anaerobic pathway (1). These

hydroxylases likely derive the hydroxyl groups from the solvent H2O similar to EntC and

MenF reactions discussed above.

2. Methylation reactions—Two methylations on O and one on C involved in the

pathway are:

1. 2-octaprenyl-6-hydroxyphenol (XXIII) → 2-octaprenyl-6-methoxyphenol (XXIV)
(i. e. O-methylation).

2. 2-octaprenyl-6-methoxy-1,4-benzoquinol (XXV) → 2-octaprenyl-3-methyl-6

methoxy-1,4-benzoquinol (XXVI) (i. e. C-methylation).

3. 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol (OMHMB)

(XXVII) → ubiquinol (XXVIII) (i. e. O-methylation).

The methylation steps alternate with the three hydroxylations described above introducing

methyl groups at 6-OH, at the ring C-3 and the 5-OH group, respectively. The three methyl

groups are derived from methionine (66), with S-adenosylmethionine being the actual

methyl donor.

The C-methylase responsible for the methylation of ring C-3 is encoded by the ubiE gene.

Mutants blocked in the methylation accumulate the substrate of the enzyme, 2-octaprenyl-6-

methoxy-1,4-benzoquinol (XXV) (174). The UbiE enzyme is non-specific and carries out

the methylation of the menaquinone intermediate, DMK (III) → MK (II) in addition to its

role in the methylation of (XXV) → (XXVI) (95) (discussed in MK).

During the screening for mutants blocked in the O-methylation reactions, mutants blocked in

the methylation of 6-OH were not obtained. However, mutants blocked in the methylation of

the 5-OH were isolated, designated as ubiG and were shown to accumulate compound

(XXVII) which was isolated and characterized (154). Further, the ubiG mutants being leaky

formed about 10% of the wild type levels of Q (1). In subsequent studies, it was reported

that the O-methylase encoded by the ubiG gene is non-specific and that it carries out the

methylation of both 6-OH and 5-OH groups (62). This lack of specificity also extends to the

presence of other groups on the benzoquinone ring; the enzyme in addition, methylates 3, 4-

dihydroxy-5-hexaprenylbenzoquinol to 3-methoxy-4-hydroxy-5-hexaprenylbenzoquinol.

The reported leakiness of the ubiG mutant, mentioned above, likely allowed sufficient

intermediate (XXIII) to be methylated at the 6-OH resulting in the formation of (XXIV),
which was subsequently converted to (XXVII) and methylated at the 5-OH resulting in the
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formation of (XXVIII) and Q. A ubiG::kan mutant has been isolated. However,

surprisingly, this mutant failed to accumulate the expected intermediate before the block 2-

octaprenyl-6-hydroxyphenol (XXVIII). Two possible reasons have been advanced for the

failure to detect compound (XXVIII). Firstly, as mentioned above, compound (XXVIII)
may not occur as a free intermediate (2, 176). Secondly, it has been suggested that the

compound may be highly reactive due to the presence of the catechol moiety and hence

degraded (62).

Organization of Q biosynthetic enzymes into a complex

As discussed above, not all the enzymes involved in Q biosynthesis have been studied in cell

free extracts. Among the enzymes studied, chorismate pyruvate-lyase (UbiC) is a

cytoplasmic enzyme, while 4-hydroxybenzoate octaprenyltransferase (UbiD) is firmly

membrane bound. Two other enzymes that have been studied, 3-octaprenyl-4-

hydroxybenzoate carboxy-lyase and 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-

benzoquinol methyltransferase, are considered to be normally associated with the membrane

(97, 98). The association of enzymes with membrane is supported by the isolation of a 2-

octaprenyl [U-14C] phenol (XXII) charged enzyme complex of molecular mass Mr of 2×106

containing at least 12 proteins ranging from 40,000 to 80,000 Mr from cells grown

anaerobically on glycerol/fumarate medium in the presence of 4-hydroxy[U-14C] benzoate.

When this complex was incubated with S-adenosylmethionine, NADH, NADPH, Mg2+, and

a cytoplasmic enzyme of molecular weight of about 20,000 (probably a methyltransferase)

(77) in the presence of oxygen, all of the 14C-labelled phenol was converted to Q (76). This

complex, therefore, contains the oxygen dependent Q-8 biosynthetic apparatus. In

anaerobically grown cells, this apparatus which is charged with 2-octaprenylphenol may be

kept in a standby position. When oxygen becomes available, Q-8 biosynthesis can be

effectively turned on (76, 77). Since this complex was isolated without detergent treatment,

it was thought that it had broken from the membrane as a distinct and native domain. This

complex contains in addition to a high level of 2-octaprenylphenol and low levels of Q,

phospholipid, and other membrane proteins (76, 77).

Based on studies with a thiol-sensitive mutant (IS16), it was reported that there is genetic

evidence for interaction between UbiX and UbiG proteins (50). The IS16 mutant had point

mutations resulting in change of a single amino acid in UbiX (S98R) and UbiG (L132Q)

when compared to the sequence of the same two proteins in E. coli K12. Complementation

of this mutant with either ubiX from E. coli K12 strain (ubiX K12) or ubiG K12 restored the

wild-type phenotype. In conntrast, while an ubiG insertion mutant was rescued by

complementation by ubiG K12 it was not rescued by ubiX K12 (50). Rescue of Q deficient

phenotypes can be achieved by levels of Q that are significantly lower than that present in

the wild-type strains (50). These studies were cited as providing supporting evidence for the

polypeptide complex described by Knoll (77) discussed above.

Regulation of Q biosynthetic genes

It is known that the quinone composition of E. coli is influenced by the availability of

oxygen. Cells grown under vigorous aeration contain 2 to 3-fold higher concentrations of Q

compared to DMK and MK. Under anaerobic conditions, the MK and DMK concentration

Meganathan and Kwon Page 16

Ecosal Plus. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



increases 2 to 3-fold while the concentration of Q decreases (12, 152). The mechanism of

this regulation is not completely understood. Shestopalov et al. (145) have shown that

chloramphenicol had no effect on these changes, suggesting post-translational regulation of

quinone levels. Further, these authors have shown that mutations in the regulatory systems

of Fnr and Arc had no effect on the quinone pool. Suzuki et al. (156) studied the regulation

of the ubiA gene using plasmid borne lacZ fusions and showed that the gene is catabolite

repressed by glucose. A similar study on plasmid borne ubiG gene also showed glucose

catabolite repression (44). SØballe and Poole (151) studied the transcriptional regulation of

ubiC-lacZ in a monolysogen and showed that the expression was higher aerobically than

anaerobically. It was further reported that glucose repressed expression while anaerobic

growth in the presence of alternate electron acceptors, nitrate and fumarate did not affect

expression. Further it was shown that ubiC was negatively regulated by transcriptional

regulators Fnr and IHF (151).

In a recent study, the expression of the operon fusions ubiC’-lacZ+, ubiCA’-lacZ+, and

ubiA’-lacZ+ were studied. In glycerol media under aerobic conditions the highest level of

expression was observed with the operon fusion ubiC’-lacZ+. Compared with the ubiC’-

lacZ+, the ubiCA’-lacZ+ operon fusion showed 26% of the activity while the ubiA’-lacZ+

operon fusion had an activity of 1%. Thus, the ubiC gene is regulated by the upstream

promoter while the ubiA gene lacks its own promoter (90). The effect of fermentable and

oxidizable carbon sources on the expression of ubiC’-lacZ+ was determined. The expression

was low in the case of fermentable carbon source glucose; increasing glucose concentration

resulted in increased repression. In the presence of oxidizable carbon sources the expression

increased 2- to 3-fold. In both fermentable and oxidizable carbon sources, supplementation

of the medium with casamino acids resulted in decrease in expression. Aerobically,

deficiency in both Q and MK or MK alone resulted in a 2-fold increase in expression

compared with wild-type cells. In the strain carrying the arcA mutation, under anaerobic

conditions the expression was from 25% to 50% higher than the anaerobically grown wild-

type strain, while in the fnr mutant the activities did not change (90). The lack of regulation

by FNR is in agreement with the absence of binding site (139). In the case of the narXL

mutant, the activity increased 50% anaerobically and 137% in the presence of NO3
− In the

presence of other electron acceptors, O2, fumarate, and TMAO, the activities were from

70% to 90% higher than that of the wild-type (90).

The expressions of the two genes involved in the decarboxylation of 3-octaprenyl-4-

hydroxybenzoate, ubiD and ubiX were studied using LacZ operon fusions. During aerobic

growth the expression of both genes depended on the carbon source:

succinate>glycerol>glucose. Mutations in fnr, arcA or hemA increased the expressions of

both genes. During anaerobic growth in LB medium glucose strongly repressed the

expression of ubiD but not ubiX (178).

Consequences of mutations in ubi genes

Certain pleotrophic properties which will be of value in isolating and/or characterizing

mutants are described here. As described above, ubi mutants were isolated by their inability

to utilize succinate or other reduced compounds as carbon sources.
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Hypersensitivity to thiols such as dithiothreitol (DTT), 2-mercaptoethanol and 1-

thioglycerol was demonstrated in ubiX and ubiD mutants (177). Subsequently, it was shown

that a ubiCA insertion mutant also exhibited this property (153). Thiol sensitivity is likely a

common property of all Q deficient strains since a respiratory chain is essential for the

maintenance of the disulfide bond forming system (78, 79).

An E. coli mutant resistant to the antibiotic and antitumor agent phleomycin was isolated.

The mutant was also found to be resistant to bleomycin and unable to grow on succinate as

the sole source of carbon and resistant to the lethal effects of heating at 52°C. The suc−

phenotype and mapping data led to the conclusion that the mutant was defective in the ubiF

gene. To confirm the observed properties, known ubiA, ubiD and ubiF mutants were

compared with the newly isolated mutants. It was found that they also exhibited these

properties (24). Recently, an ubiCA mutant was shown to exhibit the pleotrophic phenotype,

being resistant to heat, linolenic acid and phleomycin. In addition, it has been shown that Q

is involved in superoxide scavenging, and in protection against oxidative stress mediated by

CuSO4 or H2O2 (153).

A mutant showing partial resistance to streptomycin was found to be defective in the ubiF

gene. Membranes of this strain accumulated 2-octaprenyl-3-methyl-6-methoxy-1,4

benzoquinol (XXVI) but not Q. A previously characterized ubiF mutant was found to show

reduced uptake of gentamycin. At present, there is no evidence implicating Q in

aminoglycoside antibiotic uptake and these observations are attributed to the general

impairment of respiratory capacity (114).

Mutations in the Q biosynthetic pathway (ubiD, ubiB, and ubiG) led to the lack of flagellar

synthesis and motility (5, 58). An ubiA men+ strain was motile anaerobically and nonmotile

aerobically, while mutants blocked in Q and MK were found to be nonmobile under both

aerobic and anaerobic conditions. Thus, it appears that a functional electron transport system

is essential for motility and flagellar synthesis.

Mutants lacking Q, MK or both have been isolated and the role of quinones in electron

transport to oxygen and nitrate has been studied (164).

Functions of isoprenoid quinones MK and Q

The roles of MK in the anaerobic respiratory chains and Q in the aerobic respiratory chains

are well established. For details on the role of the quinones other reviews and chapters in

this series should be consulted (32, 41, 51, 52, 64, 73, 123, 124, 131, 152). EcoSal Chapter

The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica:

Enzymes and Energetics covers the aerobic and anaerobic metabolism and respiratory

chains.

Biosynthesis of Isoprenoid side chain of MK and Q

E. coli and other Gram negative bacteria synthesize the isopentenyl diphosphate (IPP) and

dimethylallyl diphosphate (DMAPP) by the mevalonate-independent pathway also known as

non-mevalonate pathway (other names are deoxyxylulose phosphate or methylerythritol

phosphate pathway) The IPP condenses with DMAPP and the prenyl chain is elongated to
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the 40-carbon octaprenyl diphosphate (OPP). The details of side chain biosynthesis are

beyond the scope of this chapter. A number of reviews are available on the topic (21, 34, 37,

38, 63, 87, 103, 107, 135–138, 149, 158).
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Fig. 1.
Structures of major quinones found in E. coli. In the structure of MK, the A ring and B ring

of the naphthoquinone are shown.
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Fig. 2.
Formation of Q and MK.
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Fig. 3.
Primary biosynthetic precursors of menaquinones.
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Fig. 4.
Menaquinone biosynthetic pathway. Each compound in the pathway is identified by its

abbreviation and a Roman numeral. CHA, chorismate; ICHA, isochorismate; SS-TPP,

succinic semialdehyde-TPP, R1 = pyrimidine component of TPP, R2 = CH3, R3 = CH2CH2

OP2O6
3−; SEPHCHC, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate;

SHCHC, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate; OSB, o-

succinylbenzoate; OSB-CoA; o-succinylbenzoyl-CoA; DHNA-CoA, 1,4-dihydroxy-2-

napththoyl-CoA; DHNA, 1,4-dihydroxy-2-napththoate; DMK-8, demethylmenaquinone
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(may be initially formed as a quinol). MK-8, menaquinone; SAM, S-adenosylmethionine;

SAH, S-adenosylhomocysteine. The genes encoding the enzymes are shown for each

reaction followed by their location on the chromosome in min. The gene encoding the

thioesterase for the conversion of DHNA-CoA (compound XI) to DHNA (compound XII)

remains to be identified and is shown as men? ?.
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Fig. 5.
Proposed mechanism of succinic semialdehyde-TPP anion formation and SHCHC (VIII)
synthesis. Only the thiazole ring of the TPP is shown since it is the active site of the

molecule. For R1, R2, and R3 see the legend to Fig. 4. The reactions from (XIII) to
SEPHCHC (VII) are carried out by MenD and the conversion of SEPHCHC (VII) ----->
SHCHC (VIII) is by MenH.
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Fig. 6.
Proposed mechanism of formation of acyl adenylate of OSB (XVIII) and its subsequent

conversion to OSB-CoA (X). The conversion of OSB-CoA (X) to spirodilactone of OSB

(XIX) is non-enzymatic.
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Fig. 7.
Ubiquinone biosynthetic pathway. Each compound in the pathway is identified by a Roman

numeral. Under anaerobic conditions, there are alternate hydroxylases for the three enzymes

incorporating molecular oxygen (UbiB, UbiH, and UbiF). It should be noted that in

compound (XXI), the chemical numbering system locates the prenyl side chain at the C-3

carbon; in compound (XXII) and subsequent intermediates, the prenyl side chain is assigned

to C-2. Compounds (XXV), (XXVI), and (XXVII), are drawn in the quinol form. Some

authors draw these structures in the quinone form. For other abbreviations see legend to Fig.
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4. The chemical names for the intermediates of the pathway are as follows: (IV),
chorismate; (XX), 4-hydroxybenzoate; (XXI), 3-octaprenyl-4-hydroxybenzoate; (XXII), 2-

octaprenylphenol; (XXIII), 2-octaprenyl-6-hydroxyphenol; (XIV), 2-octaprenyl-6-

methoxyphenol; (XXV), 2-octaprenyl-6-methoxy-1,4-benzoquinol; (XXVI), 2-octaprenyl-3-

methyl-6 methoxy-1,4-benzoquinol; (XXVII), 2-octaprenyl-3-methyl-5-hydroxy-6-

methoxy-1,4-benzoquinol; (XXVIII), ubiquinol; (I), Q, ubiquinone. The conversion of

(XXVIII) to (I) is thought to be non-enzymatic.

Meganathan and Kwon Page 37

Ecosal Plus. Author manuscript; available in PMC 2014 September 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


