28 research outputs found

    The Figure in Art: Selections from the Gettysburg College Collection

    Full text link
    The Figure in Art: Selections from the Gettysburg College Collection is the second annual exhibition curated by students enrolled in the Art History Methods class. This exhibition is an exciting academic endeavor and provides an incredible opportunity for engaged learning, research, and curatorial experience. The eleven student curators are Diane Brennan, Rebecca Duffy, Kristy Garcia, Megan Haugh, Dakota Homsey, Molly Lindberg, Kathya Lopez, Kelly Maguire, Kylie McBride, Carolyn McBrady and Erica Schaumberg. Their research presents a multifaceted view of the representation of figures in various art forms from different periods and cultures.https://cupola.gettysburg.edu/artcatalogs/1017/thumbnail.jp

    Pathway level subtyping identifies a slow-cycling biological phenotype associated with poor clinical outcomes in colorectal cancer

    Get PDF
    Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers

    The EXPRES Stellar Signals Project II. State of the Field in Disentangling Photospheric Velocities

    Get PDF
    Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved

    Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria

    Get PDF
    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5′-AGAAA-3′. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between “differentiated” cell types

    Obstetric Outcomes in Women with Rheumatic Disease and COVID-19 in the Context of Vaccination Status

    Get PDF
    OBJECTIVE: To describe obstetric outcomes based on COVID-19 vaccination status, in women with rheumatic and musculoskeletal diseases (RMDs) who developed COVID-19 during pregnancy. METHODS: Data regarding pregnant women entered into the COVID-19 Global Rheumatology Alliance registry from 24 March 2020-25 February 2022 were analysed. Obstetric outcomes were stratified by number of COVID-19 vaccine doses received prior to COVID-19 infection in pregnancy. Descriptive differences between groups were tested using the chi -square or Fisher's exact test. RESULTS: There were 73 pregnancies in 73 women with RMD and COVID-19. Overall, 24.7% (18) of pregnancies were ongoing, while of the 55 completed pregnancies 90.9% (50) of pregnancies resulted in livebirths. At the time of COVID-19 diagnosis, 60.3% (n = 44) of women were unvaccinated, 4.1% (n = 3) had received one vaccine dose while 35.6% (n = 26) had two or more doses. Although 83.6% (n = 61) of women required no treatment for COVID-19, 20.5% (n = 15) required hospital admission. COVID-19 resulted in delivery in 6.8% (n = 3) of unvaccinated women and 3.8% (n = 1) of fully vaccinated women. There was a greater number of preterm births (PTB) in unvaccinated women compared with fully vaccinated 29.5% (n = 13) vs 18.2%(n = 2). CONCLUSION: In this descriptive study, unvaccinated pregnant women with RMD and COVID-19 had a greater number of PTB compared with those fully vaccinated against COVID-19. Additionally, the need for COVID-19 pharmacological treatment was uncommon in pregnant women with RMD regardless of vaccination status. These results support active promotion of COVID-19 vaccination in women with RMD who are pregnant or planning a pregnancy

    Pathway level subtyping identifies a slow-cycling biological phenotype associated with poor clinical outcomes in colorectal cancer

    Get PDF
    Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    cis-Acting Sequences That Contribute to Synthesis of Minus-Strand DNA Are Not Conserved between Hepadnaviruses▿

    No full text
    Hepadnaviruses are DNA viruses that are found in several mammalian and avian species. These viruses replicate their genome through reverse transcription of an RNA intermediate termed pregenomic RNA (pgRNA). pgRNA is reverse transcribed by the viral polymerase into a minus-strand DNA, followed by synthesis of the plus-strand DNA. There are multiple cis-acting sequences that contribute to the synthesis of minus-strand DNA for human hepatitis B virus (HBV). Less is known about the cis-acting sequences of avian hepadnaviruses that contribute to synthesis of minus-strand DNA. To identify cis-acting sequences of duck hepatitis B virus (DHBV) and heron hepatitis B virus (HHBV), we analyzed variants containing 200-nucleotide (nt) deletions. Most variants of DHBV synthesized minus-strand DNA to 50 to 100% of the wild-type (WT) level, while two variants synthesized less than 50%. For HHBV, most variants synthesized minus-strand DNA to less than 50% the WT level. These results differ from those for HBV, where most of the genome can be removed with little consequence. HBV contains a sequence, φ, that contributes to the synthesis of minus-strand DNA. It has been proposed that DHBV has an analogous sequence. We determined that the proposed φ sequence of DHBV does not contribute to the synthesis of minus-strand DNA. Finally, we found that the DR2 sequence present in all hepadnaviruses is important for synthesis of minus-strand DNA in both DHBV and HHBV but not in HBV. These differences in cis-acting sequences suggest that the individual hepadnaviruses have evolved differences in their mechanisms for synthesizing minus-strand DNA, more so than for other steps in replication

    cis-Acting Sequences That Contribute to the Synthesis of Relaxed-Circular DNA of Human Hepatitis B Virus

    No full text
    Synthesis of the relaxed-circular (RC) genome of hepadnaviruses is a multistep process that requires template switching during reverse transcription. Studies of duck hepatitis B virus indicated the presence of cis-acting sequences, distinct from the donor and acceptor sequences for the template switches, which contribute to the synthesis of RC DNA. However, knowledge about cis-acting requirements distinct from the donor and acceptor sites for human hepatitis B virus (HBV) was lacking. In this study, we searched for cis-acting sequences for synthesis of HBV RC DNA by analyzing a set of deletion variants that collectively represent most of the HBV genome. Sequences of epsilon, DR1, DR2, 5′r, and 3′r were not analyzed in the study. Results from Southern blotting showed that multiple cis-acting sequences were involved in the synthesis of HBV RC DNA. Analysis of several HBV/woodchuck hepatitis virus chimeras corroborated the findings from the analysis of deletion variants. This study represents a comprehensive and quantitative analysis of cis-acting sequences that contribute to the synthesis of HBV RC DNA
    corecore