26 research outputs found

    UNC-98 links an integrin-associated complex to thick filaments in Caenorhabditis elegans muscle

    Get PDF
    Focal adhesions are multiprotein assemblages that link cells to the extracellular matrix. The transmembrane protein, integrin, is a key component of these structures. In vertebrate muscle, focal adhesion–like structures called costameres attach myofibrils at the periphery of muscle cells to the cell membrane. In Caenorhabditis elegans muscle, all the myofibrils are attached to the cell membrane at both dense bodies (Z-disks) and M-lines. Clustered at the base of dense bodies and M-lines, and associated with the cytoplasmic tail of β-integrin, is a complex of many proteins, including UNC-97 (vertebrate PINCH). Previously, we showed that UNC-97 interacts with UNC-98, a 37-kD protein, containing four C2H2 Zn fingers, that localizes to M-lines. We report that UNC-98 also interacts with the C-terminal portion of a myosin heavy chain. Multiple lines of evidence support a model in which UNC-98 links integrin-associated proteins to myosin in thick filaments at M-lines

    Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes

    Get PDF
    Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment. Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays. Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals. Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease

    Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts Expressed Throughout Development

    Get PDF
    Background: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. Methodology/Principal Findings: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. Conclusions/Significance: Our work demonstrates that sept9 plays an important role in zebrafish development, an

    Clinical, neuroradiological, and molecular characterization of mitochondrial threonyl-tRNA-synthetase (TARS2)-related disorder

    Get PDF
    PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype, but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays, and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity

    A SUCLG1 mutation in a patient with mitochondrial DNA depletion and congenital anomalies

    No full text
    Defects in two subunits of succinate-CoA ligase encoded by the genes SUCLG1 and SUCLA2 have been identified in mitochondrial DNA (mtDNA) depletion syndromes. Patients generally present with encephalomyopathy and mild methylmalonic acidemia (MMA), however mutations in SUCLG1 normally appear to result in a more severe clinical phenotype. In this report, we describe a patient with fatal infantile lactic acidosis and multiple congenital anomalies (MCAs) including renal and cardiac defects. Molecular studies showed a defective electron transport chain (ETC), mtDNA depletion, and a novel homozygous mutation in the SUCLG1 gene. Although our patient's clinical biochemical phenotype is consistent with a SUCLG1 mutation, it is unclear whether the MCAs observed in our patient are a result of the SUCLG1 mutation or alterations in a second gene. An increasing number of reports have described MCAs associated with mitochondrial disorders and SUCLG1 specifically. Additional studies such as whole exome sequencing will further define whether additional genes are responsible for the observed MCAs

    Expression of <i>sept9</i> genes during zebrafish development.

    No full text
    <p>Detection of <i>sept9</i> mRNA was carried out by whole-mount in situ hybridization using a probe targeted to all <i>sept9</i> isoforms on staged embryos from 256 cells to 24 hpf. Images in A–C are lateral views, animal pole to top; D and E are dorsal views, anterior to top; F and H are dorsal posterior views; G, I and J are lateral views, K is a dorsal view, anterior to left. <b>A–C</b>: <i>sept9</i> transcripts are ubiquitously expressed at early developmental states. <b>D</b>: At bud stage, <i>sept9</i> is expressed in endoderm and axis. <b>E–H</b>: <i>sept9</i> is expressed in the floor plate, ventral mesoderm and tail bud during segmentation. <b>I–K</b>: At 24 hpf, <i>sept9</i> is expressed throughout the epidermis, branchial arches, pectoral fin, and in the intermediate cell mass. <b>L</b>: Transcript specific primers were used to detect <i>sept9a</i> and <i>sept9b</i> transcripts in various stages of development by RT-PCR. <i>sept9a_tv 2, 3</i>, and <i>α</i> are expressed maternally. Amplification of <i>eIFα</i> and total RNA without addition of reverse transcriptase were used as controls. a, axis; ep, epidermis; fp, floorplate; icm, intermediate cell mass; tb, tail bud; vm, ventral mesoderm.</p

    Knockdown and overexpression (OE) of <i>sept9a_tv1</i> results in an increase in apoptotic cells in the tail.

    No full text
    <p>Embryos at the one-cell stage were injected with 2.5 ng of MO2 or 4 pg of <i>sept9a_tv1</i> mRNA and analyzed for acridine orange (AO) staining at 24 hpf. <b>A–C</b>: The tail fin of wild-type embryos is negative for AO indicating few apoptotic cells. <b>D–I</b>: Both class II MO2 and <i>sept9a_v1</i> OE embryos show an increase in AO staining indicating increased cell death.</p
    corecore