6 research outputs found

    Risks of mining to salmonid-bearing watersheds

    Get PDF
    Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.This review is based on an October 2019 workshop held at the University of Montana Flathead Lake Biological Station (more information at https://flbs.umt.edu/ newflbs/research/working-groups/mining-and-watersheds/). We thank E. O’Neill and other participants for valuable contributions. A. Beaudreau, M. LaCroix, P. McGrath, K. Schofield, and L. Brown provided helpful reviews of earlier drafts. Three anonymous reviewers provided thoughtful critiques that greatly improved the manuscript. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Our analysis comes from a western science perspective and hence does not incorporate Indigenous knowledge systems. We acknowledge this gap and highlight that the lands and waters we explore in this review have been stewarded by Indigenous Peoples for millennia and continue to be so. Funding: The workshop was cooperatively funded by the Wilburforce Foundation and The Salmon Science Network funded by the Gordon and Betty Moore Foundation. Author contributions: C.J.S. led the review process, writing, and editing. C.J.S. and E.K.S. co-organized the workshop. E.K.S. and J.W.M. extensively contributed to all aspects of the review conceptualization, writing, and editing. A.R.W., S.A.N., J.L.E., D.M.C., S.L.O., R.L.M., F.R.H., D.C.W., and J.W. significantly contributed to portions of the review conceptualization, writing, and editing. J.C., M.Ca., M.Co., C.A.F., G.K., E.D.L., R.M., V.M., J.K.M., M.V.M., and N.S. provided writing and editing and are listed alphabetically. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.Ye

    Multi-omics profiles of the intestinal microbiome in irritable bowel syndrome and its bowel habit subtypes

    No full text
    Abstract Background Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is thought to involve alterations in the gut microbiome, but robust microbial signatures have been challenging to identify. As prior studies have primarily focused on composition, we hypothesized that multi-omics assessment of microbial function incorporating both metatranscriptomics and metabolomics would further delineate microbial profiles of IBS and its subtypes. Methods Fecal samples were collected from a racially/ethnically diverse cohort of 495 subjects, including 318 IBS patients and 177 healthy controls, for analysis by 16S rRNA gene sequencing (n = 486), metatranscriptomics (n = 327), and untargeted metabolomics (n = 368). Differentially abundant microbes, predicted genes, transcripts, and metabolites in IBS were identified by multivariate models incorporating age, sex, race/ethnicity, BMI, diet, and HAD-Anxiety. Inter-omic functional relationships were assessed by transcript/gene ratios and microbial metabolic modeling. Differential features were used to construct random forests classifiers. Results IBS was associated with global alterations in microbiome composition by 16S rRNA sequencing and metatranscriptomics, and in microbiome function by predicted metagenomics, metatranscriptomics, and metabolomics. After adjusting for age, sex, race/ethnicity, BMI, diet, and anxiety, IBS was associated with differential abundance of bacterial taxa such as Bacteroides dorei; metabolites including increased tyramine and decreased gentisate and hydrocinnamate; and transcripts related to fructooligosaccharide and polyol utilization. IBS further showed transcriptional upregulation of enzymes involved in fructose and glucan metabolism as well as the succinate pathway of carbohydrate fermentation. A multi-omics classifier for IBS had significantly higher accuracy (AUC 0.82) than classifiers using individual datasets. Diarrhea-predominant IBS (IBS-D) demonstrated shifts in the metatranscriptome and metabolome including increased bile acids, polyamines, succinate pathway intermediates (malate, fumarate), and transcripts involved in fructose, mannose, and polyol metabolism compared to constipation-predominant IBS (IBS-C). A classifier incorporating metabolites and gene-normalized transcripts differentiated IBS-D from IBS-C with high accuracy (AUC 0.86). Conclusions IBS is characterized by a multi-omics microbial signature indicating increased capacity to utilize fermentable carbohydrates—consistent with the clinical benefit of diets restricting this energy source—that also includes multiple previously unrecognized metabolites and metabolic pathways. These findings support the need for integrative assessment of microbial function to investigate the microbiome in IBS and identify novel microbiome-related therapeutic targets. Video Abstrac

    NAD(P)H‐dependent enzymes for reductive amination: active site description and carbonyl‐containing compound spectrum

    No full text
    International audienceThe biocatalytic asymmetric synthesis of amines from carbonyl compounds and amine precursors presents an important advance in sustainable synthetic chemistry. Oxidoreductases (ORs) that catalyze the NAD(P)H-dependent reductive amination of carbonyl compounds directly to amines using amine donors present advantages complementary to those of amine transaminases (ATAs) with respect to selectivity, stability and substrate scope. Indeed some ORs accept alkyl and aryl amines as reaction partners enabling access to chiral secondary amine products that are not directly accessible using ATAs. Moreover, superior atom economy can usually be achieved as no sacrificial amines are required as with ATAs. In recent years a number of ORs that apparently catalyze both imine formation and imine reduction in the reductive amination of carbonyls has been identified using structure informed protein engineering, sequence analysis from natural biodiversity and increasingly a mixture of both. In this review we summarize the development of such enzymes from the engineering of amino acid dehydrogenases (AADHs) and opine dehydrogenases (OpDHs) to become amine dehydrogenases (AmDHs), which are active toward ketones devoid of any requisite carboxylate and/or amine functions, through to the discovery of native AmDHs and reductive aminases (RedAms), and the engineering of all of these scaffolds for improved or altered activity. Structural and mechanistic studies have revealed similarities, but also differences in the determinants of substrate binding and mechanism in the enzymes. The survey reveals that a complementary approach to enzyme discovery that utilizes both natural genetic resources and engineering can be combined to deliver biocatalysts that have significant potential for the industrial synthesis of chiral amines

    Jet-hadron correlations measured relative to the second order event plane in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < pjetT < 40 GeV/c as a function of the associated particle momentum. The reaction plane fit (RPF) method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at sNN−−−√ = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)
    corecore