139 research outputs found

    The NR4A subgroup: immediate early response genes with pleiotropic physiological roles

    Get PDF
    The nuclear hormone receptor (NR) superfamily includes the orphan NR4A subgroup, comprised of Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3). These NRs are classified as early response genes, are induced by a diverse range of signals, including fatty acids, stress, growth factors, cytokines, peptide hormones, phorbol esters, neurotransmitters, and physical stimuli (for example magnetic fields, shear stress). The ability to sense and rapidly respond to changes in the cellular environment thus appears to be a hallmark of this subfamily. The members of the NR4A subgroup are well conserved in the DNA binding domain (~91-95%) and the C-terminal ligand-binding domain (~60%), but are divergent in the N-terminal AB region. These receptors bind as monomers, homodimers and heterodimers with RXRs (to mediate retinoid signaling) to different permutations of the canonical NR binding motif. The NR4A subgroup activates gene expression in a constitutive ligand-independent manner. NR4A-mediated trans-activation (LBD) involves unusually active N-terminal AF-1 domains that mediate coactivator recruitment. Moreover, the NR4A receptors encode atypical LBDs and AF-2 domains. For example, the LBDs contain no cavity due to bulky hydrophobic residue side chains, and lack the classical coactivator-binding cleft constituted by helices 3, 4 and 12. However, a hydrophobic patch exists between helices 11 and 12, that encodes a novel cofactor interface that modulates transcriptional activity. In line with the pleiotropic physiological stimuli that induce the NR4A subgroup, these orphan NRs have been implicated in cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, carcinogenesis and atherogenesis

    GPI spectra of HR 8799 c, d, and e from 1.5 to 2.4μ\mum with KLIP Forward Modeling

    Full text link
    We explore KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR 8799, using PyKLIP and show algorithm stability with varying KLIP parameters. We report new and re-reduced spectrophotometry of HR 8799 c, d, and e in H & K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting simulated sources and recovering them over a range of parameters. The K1/K2 spectra for HR 8799 c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR 8799 e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We show that HR 8799 c and d show significant differences in their H & K spectra, but do not find any conclusive differences between d and e or c and e, likely due to large error bars in the recovered spectrum of e. Compared to M, L, and T-type field brown dwarfs, all three planets are most consistent with mid and late L spectral types. All objects are consistent with low gravity but a lack of standard spectra for low gravity limit the ability to fit the best spectral type. We discuss how dedicated modeling efforts can better fit HR 8799 planets' near-IR flux and discuss how differences between the properties of these planets can be further explored.Comment: Accepted to AJ, 25 pages, 16 Figure

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on \u3e100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building

    Debris Disk Results from the Gemini Planet Imager Exoplanet Survey\u27s Polarimetric Imaging Campaign

    Get PDF
    We report the results of a ∼4 yr direct imaging survey of 104 stars to resolve and characterize circumstellar debris disks in scattered light as part of the Gemini Planet Imager (GPI) Exoplanet Survey. We targeted nearby (≲150 pc), young (≲500 Myr) stars with high infrared (IR) excesses (L IR/L ∗ \u3e 10-5), including 38 with previously resolved disks. Observations were made using the GPI high-contrast integral field spectrograph in H-band (1.6 μm) coronagraphic polarimetry mode to measure both polarized and total intensities. We resolved 26 debris disks and 3 protoplanetary/transitional disks. Seven debris disks were resolved in scattered light for the first time, including newly presented HD 117214 and HD 156623, and we quantified basic morphologies of five of them using radiative transfer models. All of our detected debris disks except HD 156623 have dust-poor inner holes, and their scattered-light radii are generally larger than corresponding radii measured from resolved thermal emission and those inferred from spectral energy distributions. To assess sensitivity, we report contrasts and consider causes of nondetections. Detections were strongly correlated with high IR excess and high inclination, although polarimetry outperformed total intensity angular differential imaging for detecting low-inclination disks (≲70°). Based on postsurvey statistics, we improved upon our presurvey target prioritization metric predicting polarimetric disk detectability. We also examined scattered-light disks in the contexts of gas, far-IR, and millimeter detections. Comparing H-band and ALMA fluxes for two disks revealed tentative evidence for differing grain properties. Finally, we found no preference for debris disks to be detected in scattered light if wide-separation substellar companions were present

    The Sloan Digital Sky Survey Reverberation Mapping Project: Key Results

    Full text link
    We present the final data from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, a precursor to the SDSS-V Black Hole Mapper Reverberation Mapping program. This data set includes 11-year photometric and 7-year spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1<z<4.5 and a luminosity range of Lbol=1E44-47.5 erg/s, along with spectral and variability measurements. We report 23, 81, 125, and 110 reverberation mapping lags (relative to optical continuum variability) for broad Halpha, Hbeta, MgII and CIV using the SDSS-RM sample, spanning much of the luminosity and redshift ranges of the sample. Using 30 low-redshift RM AGNs with dynamical-modeling black hole masses, we derive a new estimate of the average virial factor of =0.62+-0.07 for the line dispersion measured from the RMS spectrum. The intrinsic scatter of individual virial factors is 0.31+-0.07 dex, indicating a factor of two systematic uncertainty in RM black hole masses. Our lag measurements reveal significant R-L relations for Hbeta and MgII at high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of the R-L relation for CIV given the limited dynamical range in luminosity, we found substantially larger scatter in CIV lags at fixed L1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hbeta, MgII and CIV, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hbeta and MgII recipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the CIV recipe. The intrinsic scatter of SE masses around RM masses is ~0.45 dex for Hbeta and MgII, increasing to ~0.58 dex for CIV.Comment: 33 pages. Data products available at ftp://quasar.astro.illinois.edu/public/sdssrm/final_result

    Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques

    Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques

    Testing the Interaction between a Substellar Companion and a Debris Disk in the HR 2562 System

    Get PDF
    The HR 2562 system is a rare case where a brown dwarf companion resides in a cleared inner hole of a debris disk, offering invaluable opportunities to study the dynamical interaction between a substellar companion and a dusty disk. We present the first ALMA observation of the system as well as the continued Gemini Planet Imager monitoring of the companion's orbit with six new epochs from 2016 to 2018. We update the orbital fit, and in combination with absolute astrometry from GAIA, place a 3σ upper limit of 18.5 MJ on the companion's mass. To interpret the ALMA observations, we used radiative transfer modeling to determine the disk properties. We find that the disk is well resolved and nearly edge-on. While the misalignment angle between the disk and the orbit is weakly constrained, due to the short orbital arc available, the data strongly support a (near) coplanar geometry for the system. Furthermore, we find that the models that describe the ALMA data best have inner radii that are close to the companion's semimajor axis. Including a posteriori knowledge of the system's SED further narrows the constraints on the disk's inner radius and places it at a location that is in reasonable agreement with (possibly interior to) predictions from existing dynamical models of disk truncation by an interior substellar companion. HR 2562 has the potential over the next few years to become a new test bed for dynamical interaction between a debris disk and a substellar companion
    • …
    corecore