119 research outputs found

    Bycatch of lined seahorses (Hippocampus erectus) in a Gulf of Mexico shrimp trawl fishery

    Get PDF
    Bycatch studies have largely ignored population level effects on fish species of little commercial interest. Here we analyze bycatch of the lined seahorse (Hippocampus erectus) in the bait-shrimp trawl fishery in Hernando Beach, Florida, providing the first fisheries data for this species. Based on catch per unit of effort (CPUE), size, sex, and reproductive status of trawled H. erectus, 1) approximately 72,000 seahorses were caught annually by this fleet, from a population of unknown size, 2) trawling affected population cohorts differentially because of temporal and spatial variation in CPUE and population size, and 3) a greater proportion of females than males was removed in trawling. Our findings suggest that trawling may affect seahorse populations through direct mortality, social disruption, and habitat damage. However, the lack of specific abundance or catchability estimates for H. erectus means that the precise impact of trawling on this fish remains uncertain. This paper focuses attention on the need for research and monitoring of small fishes that are caught incidentally in nonselective gear

    The vertical distribution of fish on two offshore oil platforms

    Get PDF
    Knowledge of platform ecology is necessary to best inform decommissioning practice. Remotely operated vehicle (ROV) video is often collected during standard industry operations and may provide insight into the marine life associating with offshore platforms, however, the utility of this video for ecological assessments remains unclear. Archival ROV video surveys at the Wandoo oil platforms on Australia’s North West Shelf was evaluated for its utility, with only 4.9% of imagery usable for standardised ecological studies. Based on the subset of usable ROV video, the influence of depth and structural complexity on attributes of the fish assemblage on the Wandoo oil platforms was examined. Vertical ROV transects on three vertical shafts on the Wandoo platforms were stratified into 10 m depth strata from 0 to 50 m, with 111 fish taxa from 25 families identified and counted across all depth strata. At both platforms, taxonomic richness and abundance was significantly highest in shallow regions and declined with depth. Small reef fish were predominantly associated with structurally complex habitat in shallow regions (<22 m), whilst large demersal species dominated below 32 m. Future decommissioning policy in Australia should consider the vertical fish distributions and the importance of shallow sections of platforms. Finally, the dearth of usable video was due to the haphazard method of collection and it is recommended that future surveys should be conducted according to scientific standards to ensure greater utility of the video for both industry use and scientific research

    Enhanced pelagic biomass around coral atolls

    Get PDF
    T.B.L. was supported by the Marine Biodiversity Hub through the Australian Government’s National Environmental Research Program (NERP). P.H.B.-S. was supported by a Cusanuswerk doctoral fellowship, a Lesley & Charles Hilton-Brown Scholarship, University of St. Andrews, and a grant from the Fisheries Society of the British Isles. M.J.C. was supported by Australian Research Council grant FS110200057.Understanding the processes driving the distribution of mid-water prey such as euphausiids and lanternfish is important for effective management and conservation. In the vicinity of abrupt topographic features such as banks, seamounts and shelf-breaks, mid-water faunal biomass is often elevated, making these sites candidates for special protection. We investigated the spatial distribution of water column acoustic backscatter - a proxy for macrozoo - plankton and fish biomass - in the 9 km transition zone between the pelagos and coral atolls in the Chagos Archipelago (6° N, 72° E). The purpose was to determine the magnitude and distance over which bathymetry may enhance biomass in the mid-water, and thereby identify the scale over which static topographic features could influence the open ocean. Two distinct sound scattering layers were identified, from the surface to 180 m and from 300 to 600 m, during daytime. Both layers exhibited significant increases in backscatter near features. Close to features, the shallow layer backscatter was ca. 100 times higher and was driven partly by increasing numbers of larger individuals, evident as single target echoes. We determine the regional scale of influence of features on pelagic biomass enhancement to be ca. 1.8 km in the Chagos Archipelago, and suggest possible ecological explanations that may support it. Our approach determining the scale of influence of bathymetry should be applied during the process of marine reserve design, in order to improve protection of mid-water fauna associated with topographical features, such as seamounts and coral reefs.PostprintPeer reviewe

    First underwater sighting of Shepherd’s beaked whale (Tasmacetus shepherdi)

    Get PDF
    Here we describe the first underwater sighting of Shepherd’s beaked whale (Tasmacetus shepherdi). Two individuals were observed together on video footage obtained via mid-water stereo-Baited Remote Underwater Video Systems (BRUVS) deployed off the coast of Inaccessible Island, Tristan da Cunha, in the South Atlantic. This observation constitutes the first recorded live sighting of this species in the waters of Tristan da Cunha since 2002 and provides further evidence for the persistence of a population of this species in the region. The observed individuals lacked the dark flipper stripe observed in previous descriptions, indicating that the species may exhibit greater variation in pigmentation than previous records indicate. The planned implementation of a marine reserve in the region along with the current low level of fishing pressure and remote location of this archipelago provide a good context to ensure the appropriate management and protection of this rare species. The recent establishment of an ongoing mid-water stereo-BRUVS monitoring programme, in concert with other methods targeted at marine mammals, may yield further information about this little known species and aid in informing management decisions in the future.Publisher PDFPeer reviewe

    Submerged carbonate banks aggregate pelagic megafauna in offshore tropical Australia

    Get PDF
    This research was undertaken for the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Research Program (NERP). PB was the recipient of a scholarship for international fees during the course of this work. SN publishes with permission of the Chief Executive Officer, Geoscience Australia.The conservation of marine biodiversity is firmly embedded in national and international policy frameworks. However, the difficulties associated with conducting broad-scale surveys of oceanic environments restrict the evidence base available for applied management in pelagic waters. For example, the Oceanic Shoals Australian Marine Park (AMP) was established in 2012 in a part of Australia’s continental shelf where unique topographic features are thought to support significant levels of biodiversity, yet where our understanding of ecological processes remains limited. We deployed mid-water baited remote underwater video systems (mid-water BRUVS) in the Oceanic Shoals AMP to provide the first non-extractive baseline assessment of pelagic wildlife communities in the area. We used these observations and high-resolution multibeam swaths of the seafloor to explore potential relationships between prominent geomorphological features and the (i) composition, (ii) richness, and (iii) relative abundance of pelagic communities. We documented 32 vertebrate species across three sampling areas, ranging from small baitfish to large sharks and rays, and estimated that up to nearly twice as many taxa may occur within the region as a whole. This highlights the Oceanic Shoals AMP as a reservoir of biodiversity comparable to other documented offshore oceanic hotspots. Our results also confirm the AMP as a possible distant foraging destination for IUCN red listed sea turtles, and a potential breeding and/or nursing ground for a number of charismatic cetaceans. Model outputs indicate that both species richness and abundance increase in proximity to raised geomorphic structures such as submerged banks and pinnacles, highlighting the influence of submarine topography on megafauna distribution. By providing a foundational understanding of spatial patterns in pelagic wildlife communities throughout a little studied region, our work demonstrates how a combination of non-destructive sampling techniques and predictive models can provide new opportunities to support decision-making under data shortage.Publisher PDFPeer reviewe

    Measuring the Impact of Conservation : The Growing Importance of Monitoring Fauna, Flora and Funga

    Get PDF
    Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on.This paper was made possible by funding from the Swiss Network for International Studies to the University of Lausanne (L.F. and P.J.S.) and its partners under the project: "Unblocking the flow of biodiversity data for multi-stakeholder environmental sustainability management". The research was carried out, in part, by GNG at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PAVB was supported by the project MACRISK-PTDC/BIA-CBI/0625/2021, through the FCT-FundacAo para a Ciencia e a Tecnologia. YNB acknowledges support from the Audemars-Watkins Foundation for the CBCR's protected area monitoring work featured in this paper.info:eu-repo/semantics/publishedVersio

    Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga

    Get PDF
    Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on

    Models of marine fish biodiversity : assessing predictors from three habitat classification schemes

    Get PDF
    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modeling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modeling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability
    corecore