180 research outputs found

    Wavelength limits on isobaricity of perturbations in a thermally unstable radiatively cooling medium

    Get PDF
    Nonlinear evolution of one-dimensional planar perturbations in an optically thin radiatively cooling medium in the long-wavelength limit is studied numerically. The accepted cooling function generates in thermal equilibrium a bistable equation of state P(ρ)P(\rho). The unperturbed state is taken close to the upper (low-density) unstable state with infinite compressibility (dP/dρ=0dP/d\rho= 0). The evolution is shown to proceed in three different stages. At first stage, pressure and density set in the equilibrium equation of state, and velocity profile steepens gradually as in case of pressure-free flows. At second stage, those regions of the flow where anomalous pressure (i.e. with negative compressibility) holds, create velocity profile more sharp than in pressure-free case, which in turn results in formation of a very narrow (short-wavelength) region where gas separates the equilibrium equation of state and pressure equilibrium sets in rapidly. On this stage, variation in pressure between narrow dense region and extended environment does not exceed more than 0.01 of the unperturbed value. On third stage, gas in the short-wavelength region reaches the second (high-density) stable state, and pressure balance establishes through the flow with pressure equal to the one in the unperturbed state. In external (long-wavelength) regions, gas forms slow isobaric inflow toward the short-wavelength layer. The duration of these stages decreases when the ratio of the acoustic time to the radiative cooling time increases. Limits in which nonlinear evolution of thermally unstable long-wavelength perturbations develops in isobaric regime are obtained.Comment: 21 pages with 7 figures, Revtex, accepted in Physics of Plasma

    Reducing multiphoton ionization in a linearly polarized microwave field by local control

    Full text link
    We present a control procedure to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding to the original Hamiltonian a comparatively small control term which might consist of an additional set of microwave fields. This modification restores select invariant tori in the dynamics and prevents ionization. We demonstrate the procedure on the one-dimensional model of microwave ionization.Comment: 8 page

    Far-from-equilibrium Ostwald ripening in electrostatically driven granular powders

    Full text link
    We report the first experimental study of cluster size distributions in electrostatically driven granular submonolayers. The cluster size distribution in this far-from-equilibrium process exhibits dynamic scaling behavior characteristic of the (nearly equilibrium) Ostwald ripening, controlled by the attachment and detachment of the "gas" particles. The scaled size distribution, however, is different from the classical Wagner distribution obtained in the limit of a vanishingly small area fraction of the clusters. A much better agreement is found with the theory of Conti et al. [Phys. Rev. E 65, 046117 (2002)] which accounts for the cluster merger.Comment: 5 pages, to appear in PR

    Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics

    Full text link
    It has been recently shown (Fouxon et al. 2007) that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. This work reports molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review

    On population extinction risk in the aftermath of a catastrophic event

    Full text link
    We investigate how a catastrophic event (modeled as a temporary fall of the reproduction rate) increases the extinction probability of an isolated self-regulated stochastic population. Using a variant of the Verhulst logistic model as an example, we combine the probability generating function technique with an eikonal approximation to evaluate the exponentially large increase in the extinction probability caused by the catastrophe. This quantity is given by the eikonal action computed over "the optimal path" (instanton) of an effective classical Hamiltonian system with a time-dependent Hamiltonian. For a general catastrophe the eikonal equations can be solved numerically. For simple models of catastrophic events analytic solutions can be obtained. One such solution becomes quite simple close to the bifurcation point of the Verhulst model. The eikonal results for the increase in the extinction probability caused by a catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure

    Hydrodynamic singularities and clustering in a freely cooling inelastic gas

    Full text link
    We employ hydrodynamic equations to follow the clustering instability of a freely cooling dilute gas of inelastically colliding spheres into a well-developed nonlinear regime. We simplify the problem by dealing with a one-dimensional coarse-grained flow. We observe that at a late stage of the instability the shear stress becomes negligibly small, and the gas flows solely by inertia. As a result the flow formally develops a finite time singularity, as the velocity gradient and the gas density diverge at some location. We argue that flow by inertia represents a generic intermediate asymptotic of unstable free cooling of dilute inelastic gases.Comment: 4 pages, 4 figure

    Thermal Instability-Induced Interstellar Turbulence

    Full text link
    We study the dynamics of phase transitions in the interstellar medium by means of three-dimensional hydrodynamic numerical simulations. We use a realistic cooling function and generic nonequilibrium initial conditions to follow the formation history of a multiphase medium in detail in the absence of gravity. We outline a number of qualitatively distinct stages of this process, including a linear isobaric evolution, transition to an isochoric regime, formation of filaments and voids (also known as "thermal" pancakes), the development and decay of supersonic turbulence, an approach to pressure equilibrium, and final relaxation of the multiphase medium. We find that 1%-2% of the initial thermal energy is converted into gas motions in one cooling time. The velocity field then randomizes into turbulence that decays on a dynamical timescale E_k ~ t^-n, 1 < n < 2. While not all initial conditions yield a stable two-phase medium, we examine such a case in detail. We find that the two phases are well mixed with the cold clouds possessing a fine-grained structure near our numerical resolution limit. The amount of gas in the intermediate unstable phase roughly tracks the rms turbulent Mach number, peaking at 25% when M_rms ~ 8, decreasing to 11% when M_rms ~ 0.4.Comment: To appear in the ApJ Letters, April 2002; 5 pages, 3 color figures, mpeg animations available at http://akpc.ucsd.edu/ThermalLetter/thermal.htm

    Fluctuations of Current in Non-Stationary Diffusive Lattice Gases

    Full text link
    We employ the macroscopic fluctuation theory to study fluctuations of integrated current in one-dimensional lattice gases with a step-like initial density profile. We analytically determine the variance of the current fluctuations for a class of diffusive processes with a density-independent diffusion coefficient, but otherwise arbitrary. Our calculations rely on a perturbation theory around the noiseless hydrodynamic solution. We consider both quenched and annealed types of averaging (the initial condition is allowed to fluctuate in the latter situation). The general results for the variance are specialized to a few interesting models including the symmetric exclusion process and the Kipnis-Marchioro-Presutti model. We also probe large deviations of the current for the symmetric exclusion process. This is done by numerically solving the governing equations of the macroscopic fluctuation theory using an efficient iteration algorithm.Comment: Slightly extended version. 12 pages, 6 figure

    A nonlinear theory of non-stationary low Mach number channel flows of freely cooling nearly elastic granular gases

    Full text link
    We use hydrodynamics to investigate non-stationary channel flows of freely cooling dilute granular gases. We focus on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type in Lagrangian coordinates. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation is exactly soluble, and the solution develops a finite-time density blowup. The heat diffusion, however, becomes important near the attempted singularity. It arrests the density blowup and brings about novel inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. Both the density profile of an ICS, and the characteristic relaxation time towards it are determined by a single dimensionless parameter that describes the relative role of the inelastic energy loss and heat diffusion. At large values of this parameter, the intermediate cooling dynamics proceeds as a competition between low-density regions of the gas. This competition resembles Ostwald ripening: only one hole survives at the end.Comment: 20 pages, 15 figures, final versio
    • 

    corecore