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In order to reduce the heat flux entering the divertor, it is desirable to have strong impurity

radiation in the scrape-off layer (SOL) of reactor-size tokamaks like the International

Thermonuclear Experimental Reactor [International Thermonuclear Experimental Reactor

(ITER) Conceptual Design Activity Final Report, ITER Documentation Series No. 16

(International Atomic Energy Agency, Vienna, 1991)]. Under such circumstances,

however, the SOL plasma is likely to be unstable to the radiative condensation instability.

In the present paper, an investigation is undertaken to study the effects of edge-localized

mode (ELM) activity on this instability. In the linear regime, it is demonstrated that high-

frequency ("grassy") ELMs may parametrically excite acoustic waves. The possibility of

nonlinear radiative collapse with concomitant stratification of the plasma is discussed, and

solutions describing nonlinear traveling waves are derived in which the plasma goes over

from equilibrium state to another.
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I. Introduction

Enhanced confinement regimes in tokamaks are usually accompanied by Edge

Localized Mode (ELM) activity. 1,2 The underlying mechanisms are still not entirely clear,

but certainly involve aspects of nonlinear edge-plasma magnetohydrodynamics. ELMs

introduce bursts of heat into the scrape-off layer (SOL), between which the SOL plasma

cools down as a result of energy losses due to impurity radiation and heat flux to the

divertor plates. Regimes where practically all the heat flux into the SOL from the bulk

plasma is dissipated by impurity radiation are desirable for the divertor design for the

International Thermonuclear Experimental Reactor (ITER)3 since they are characterized by

very low heat loads on the divertor plates. However, as a result of strong impurity radiation

losses, the SOL plasma may be unstable to radiative instabilities. The onset of these

instabilities drastically influences the nonlinear dynamics of the SOL, which is clearly

important for understanding ELM phenomena and their consequences for, e.g., the ability

of the divertor to cope with the incoming heat bursts.

Radiative instabilities in plasmas have been investigated by many authors in

different contexts, e.g., solar prominences 4, intergalactic and interplanetary clouds,5 ,6 and

Multifaceted Asymmetric Radiation From the Edge plasma (MARFE) formation in tokamak

plasmas7-10 (see also references in these articles). Nearly all these studies have, however,

been restricted the study of instability in systems with a stationary equilibrium. On the other

hand, a tokamak SOL periodically heated by ELMs is, of course, inherently nonstationary

and behaves differently. In space plasmas, one may envisage similar behavior in interstellar

clouds periodically heated by pulsar radiation.

The present paper considers linear and nonlinear radiative instabilities in

periodically heated, optically thin, plasmas, which are cooled by impurity radiation. There

are obviously two opposite limiting behaviors of such a system. Either the plasma cools

down significantly between the heat bursts, or the cooling is incomplete and the
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temperature stays nearly constant. In a tokamak plasma, the first limit seems appropriate for

so-called type I ELMs, where the dwell time between bursts is much longer (-30 ms in

DIII-DI) than the duration of the bursts themselves (~1 ms). The plasma may then be

unstable to the radiative condensation instability while cooling down during the dwell time.

To substantiate this claim, let us make a few estimates based on parameters pertinent to the

ITER. The time scales associated with convection, conduction, and impurity radiation

losses are, respectively,

Tc -I,/CS,

n~lil2~

T 3n111
2  (1)

K

3nT

QR

where QR is the energy losses owing to impurity radiation, l the characteristic length

scale parallel to the magnetic field, c. the sound speed, n the electron density, T the

plasma temperature, and K oc T5 2 the electron heat conductivity along the magnetic field

lines. Numerical values for the time scales (1) with a beryllium impurity at different

temperatures are presented in Fig. 1, and indicate that during the dwell time of type I ELM,

after an initial phase of stable cooling down, the plasma may be unstable once the

temperature becomes so low that heat conduction is small. Moreover, since -rR is smaller

than the dwell time, the instability is likely to enter a nonlinear stage. For simplicity, we

have assumed that the impurity radiation can be described by coronal equilibrium, taking

QR - nn1L(T), where ni is the impurity density, and the function L(T) depends on the

impurity species.
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If the repetition rate of ELM bursts is high and the amplitude is small, as in the case

of "grassy" ELMs, the plasma does not have time to cool down completely or develop

nonlinear instability between subsequent heat bursts. However, parametric excitation of

radiative instabilities might be possible in this case.

In Sec. II we consider linear and parametric excitation of radiative instabilities. If

the growth rate of the cooling-down instability from Sec. II is large compared with the

inverse ELM dwell time, the instability enters a nonlinear stage considered in Sec. III. In

this case, the plasma may collapse into very cold, dense regions and thus becomes highly

stratified. In Sec. IV, nonlinear solutions describing nonlinear stationary thermal waves are

constructed by reducing the hydrodynamic plasma equations to the Newton equation for

massive particle motion in a complex potential with friction. This makes it possible to study

the nonlinear stage of linear instability as well as the nonlinear instability excited by a finite

amplitude perturbation. Finally, in Sec. V, our conclusions are summarized.

II. Linear radiative instability of ELMy SOL plasmas

Throughout this paper we shall describe the plasma in terms of one-dimensional

hydrodynamic equations summed over all species, which for simplicity are assumed to

share a common temperature and velocity. The resulting continuity, momentum and heat

balance equations are

an a(nv)
-+ - - , (2)
at ax

aMnv a( )2 +
at ax ax)
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a(p + Mn 2 +J(Yp Mnv 2  aT ja _-Q(,Pt), (4
at Y-1 2) ax ly-1 2 ax 2 ax

where M and n are the averaged ion mass and density; v, P - 2nT , and T are the plasma

velocity, pressure, and temperature; y is the adiabatic index; and K and q are the electron

heat conductivity and ion viscosity coefficients. Q(n,P, t) is the cooling-heating function,

Q(nP, t) - QR(n, P) - QH(n, P, t), accounting for both energy losses due to impurity

radiation, QR(, P) >0, and the heat flux coming into the SOL from the bulk plasma,

QH (n, P, t), which may be strongly modulated by the ELM bursts. Since q cc P/vii, we

have KM oc iEM/iiM >>q, where vii is the ion-ion collision frequency and m is the

electron mass. When making estimates we shall assume that QR - n IL(T), where

b - n1 /n =const. is the fraction of impurities.

If the plasma is homogeneous,n - no=const., the evolution of the pressure Po(t)

is described by the equation

dPO(t) = - -1)Q(njPo(t),t) (5)
dt

To examine the stability of this solution, we write n(x,t)-no+ f(t)eik,

P(x, t) - Po(t) + P(t)e , where fi and P are small density and pressure perturbations,

and k is the wave number. Linearizing the Eqs. (2)-(4) and taking into account Eq. (5), we

then obtain

1 d [ Mno d2 i 2. +k 2 dfi
-T+ yk n+-y -1 dt Po(t) dt Po(t) dt

a (Q ick 2 f Mno d 2fi Tk 2 dfi + a (Q\Kk 2 2 (6)
- l.P+ t - -7 - + - - k n.(6)

a ln~P 2no IPo(t) dt 130(t) dt alnniO 2noI
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This equation enables us to investigate radiative stability of nonstationary plasma

equilibrium (5), and generalizes in this respect the earlier investigations carried out in Ref.

12. It is useful to recall the main results of these works, relevant to our further discussion,

by analyzing Eq. (6) assuming that there is no time dependence of the heating-cooling

function, Q - Qo(n,P). The pressure Po=const. is then determined by the condition

Qo (no,Po) - 0 or, equivalently, by

QR(no,Po)- -H (no,Po). (7)

Consider the frequency vR ~ ( ~ which is the characteristic

relaxation rate of plasma parameters due to small variations of the heating-cooling function.

Since we assume that the temperatures of the different species are equal, we need to

demand vR < /'m/Mvi - (m/M)vt (ve is the electron-ion collision frequency), so that

the electron-ion temperature equilibration time is smaller than the characteristic cooling

time. All coefficients multiplying fi in Eq. (6) are now constant, so it is worthwhile to take

the Fourier transform, fi(t) oc e~ . Then, for high oscillation frequency,

vR <<( << Wm/Mvii, the dominant terms are on the left hand side of Eq. (6), which

describes adiabatic sound waves with

(y _-1) 2 r&k2 
_(Y - 1) r(2QO' 2i a 0)(0O - i. - i (y -1) %k2 (8)

4yno 2y I P 0  P o k On )j J

where o, -k jyPo/Mno and the subscript '0' by the derivatives indicates that they are

taken at P = Po and n = no.

For small values of k, there are two additional branches in the solutionto Eq. (6),

corresponding to lower frequencies, (0s vR, namely
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(0 - O)p - -i(y - 1)( ) 
(9

= -i~y k a" )0 9

and modified acoustic waves (k -+ 0)

aW2PO y(aQo/alnP)O+(aQO/alnn)O(
I - oa +2(y-1) (aQo/alnP)O(aQO/alnn)O , (10)

where the frequency

Wa2 
- _ 2 (aQO/alnn)O (11)

Mno (aQo/aln P)O

may be obtained from Eq. (6) by only keeping the right hand side. If QR - n 1 L4T), and

the heating function does not depend on plasma density and pressure, QHconst., it is

useful to introduce the parameter P(T) a -(d in [dln T). Then the relations (8)-( 11) can be

written in the form

O-OS-i( + i (Y -1)QR {(y -1)PO-2, (12)
4yno 2yPO

O-wp-i(Y-) (pO, (13)

o-aiMa 2po (y - )O - 2
Wa+2(y -QR Po(2+ o)

Oa2 _ P 2+ p 0  (14a)
Mno PO
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where Po - P(TO).

From Eqs. (12)-(13) one sees that adiabatic sound wave may be unstable for

O > 2/(y -1)> 0, the branch op is unstable for s0 >0, and the modified acoustic branch

is unstable for -2 < Po <0. The characteristic growth rate of these unstable branches is

VR. Thus, in general a homogeneous plasma heated by a steady heat source is only stable

for PO <-2. However, a modulation of the heat source may result in a different type of

instability. Let us consider a weakly modulated heat source

QH (n, P, t) - QH (1+ A sin(Ot)) , (15)

where QH is a constant, and A<<1 and Q<vR are the amplitude and frequency of the

modulated part of the heating term. The pressure variation due to the heat source

modulation follows immediately from Eq. (5)

SAsin(At)1
P(t)%Po 1+ .lQ/al ) (16)

(aln QR /alnP)OI

where PO is determined from relation QR(no,Po) - QH- Substituting expression (16) into

Eq. (6) and keeping only terms linear in A, gives

-y + Oa21+ Asin(Qt)fi - 0, (17)
dtT

where Oa2 is defined in Eq. (11), and

1 + {a(ln((OQR/aln n)/(aQR/o In P)))a In P1}AA- (aQ/alP) (18)
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or, when QR - n I4T),

A [2(ds/dinT)O (19)
PO Po(2+ PO)

Eq. (17) describes the effect of a modulated heat source on modified acoustic

waves. On the other hand, this equation is well known for its parametric instability. 13 The

maximum growth rate, bm , corresponds to 2wa - Q and equals

m - Ca .V4 (20)

Notice that b.. < Oa - 0 < vR. Taking into account the natural damping of the modified

acoustic branch (See Eqs. (10), (14)), we find the following criterion for destabilization of

this wave by heat source modulation

A > 20)aPO PAY - 1) - 2) ~ (21)
(Y -1)QR 00(2+ 0) -2(d$/d In T)0  VR

This inequality can be satisfied for a small modulation amplitude A because Oa/vR <1

Since we are considering parametric excitation of a traveling wave, let us estimate

the length la at which the parametric instability reaches its nonlinear stage. Assuming that

la - (aOa/ak)/b and 20a - 9, we find from Eqs. (14), (20)

la ~ cs/QA . (22)

For c ~3 106 cM-3 , Q ~ 104 s-1, and A ~0.1, from Eq. (2.20) we have Ia~ 3 103 cm.

This estimate shows that parametric excitation of modified acoustic waves may be
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important for large ITER-like devices, where the connection length of magnetic field lines

in the SOL is about 104 cm, and the parametric instability may indeed reach a nonlinear

stage.

Adiabatic sound wave can also be affected by the heat source modulation, but since

WS > vR, the maximum growth rate of parametric instability is rather weak in this case,

bma ~ AvR. In general, it can therefore not compete with the natural damping of the

adiabatic sound wave - VR (see Eqs. (8)-(12)).

III. Nonlinear radiative condensation Instability during the dwell time

In this Section we consider nonlinear evolution of the cooling SOL plasma during

the dwell time between bursts of type I ELMs. The heat flux entering the SOL, QH, is

assumed to be negligible between the bursts. In order to obtain a qualitative understanding

of the evolution of the SOL plasma parameters, let us first, for simplicity, assume that the

radiation function L(T) has a power-law dependence on T over the temperature interval of

interest, L(T) oc T~0. This gives the following model for the radiation function

QR(R>P) -"QR(n/n0)2+' (P(O)/P , (23)

where QR is a normalization factor, and P(O) is initial plasma pressure. Of course, the

actual function L(T) appropriate for SOL impurities cannot be described by the simple

expression (23). However, analysis of plasma behavior governed by Eqs. (2)-(4) with the

simplified cooling function (23) is useful for understanding more realistic cases; an

example is considered at the end of this section. As we shall see, Eqs. (2)-(4) with the

simplified cooling function (23) have nonlinear solutions describing the "collapse" of a

plasma, unstable to the radiative condensation instability, into cold, dense filaments. Other
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such solutions have been derived in various parameter regimes by Meerson and Sasorov

(for cooling functions QR(n, P) different from ours). 14 -16 The first paper by these

authors 14 treats the case when the cooling time -rR is much shorter than that of heat

conduction or pressure equilibration. In Sasorov's paper' 5 it shown that homogeneous,

cold, cylindrical regions collapse to form dense, two-dimensional surfaces, under the

assumption that this process can be regarded as subsonic. This approximation is admissible

for intermediate wavelengths (long enough to neglect heat conduction, but short enough to

allow for pressure equilibration), as discussed in subsequent papers.16 In contrast to these

previous works, we consider non-stationary plasmas and study the nonlinear regime of the

instability of a cooling plasma. We demonstrate that, in one dimension, thermal collapse

occurs practically regardless of initial conditions if the radiation function is-described by

(23). Two basically different mechanisms of collapse are identified, corresponding to

different ranges of the parameter P.

To proceed with the analysis, we first note that the solution of Eq. (5) describing

homogeneous cooling of the plasma with the cooling function (23) is

Po(t)/P(O) -(1 - t/to ) 1/0+0 (24)

where to is the characteristic cooling time

_'o -- P . (25)
o R(1+ P)(Y - 1)

Note that if p>-1, the plasma cools down completely in the time t0 , whereas if P <-1, to

becomes negative and Po(t) -+0 only as t - oo.

As is frequently the case when analyzing one-dimensional nonlinear fluid

equations, it is convenient to introduce Lagrangian coordinates (T, z)

- 11-



x
T M t , z(t,x) f n(t, x') dx'. (26)

0

The equations (2)-(4), where we neglect thermal conductivity and viscosity terms, then

simplify to

onIav- - - , (27)
ft az

av aP
M - - -- (28)ft az

a mnP aln n
- a - -(Y - 1)QR(nP) /P (29)

At sufficiently short wavelengths, the condensation process is isobaric and

subsonic, and the momentum equation (28) may be replaced by, simply,

-p - 0 (30)
az

When this is case (the requirements for which are discussed in detail below), the pressure

is determined entirely by the conditions far from the condensation region, where we

assume the plasma to be homogeneous, n - no =const. As a result, the pressure is given

by Eq. (5) with n=n.. If the velocity is eliminated from Eqs. (27), (29), and Eq. (5) is

used for the pressure, the following equation for the density results

aN N(N 2+p _ 1) (31)
a; Y(l+P)(+g)
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where N and g are normalized density and time variables,

Nwn/n. , g - -/to(z) (32)

Note, that if P>-1, the time variable g runs "backwards", i.e., g<O if t >0. The solution

to Eq. (31) is

r 1- N- (2+0) -(2+ 0)
N(g,z) - (1+ g)(2 +P)y(l+ ) 1(

for arbitrary initial conditions No(z)-no(z)/n.. It follows that, if P<-2, the

homogeneous state N =1 is not only linearly stable, as found in the preceding secion, but

also nonlinearly stable since any initial perturbation decays with time. If P>-2, and

No(z)>1 for some z, the density approaches infinity there at the later instant of time

g - g*(z) - 1 - NO(2+) (1+0)/(2+p) -1 (34)

Since the pressure is still finite, the temperature vanishes when g=g,. In other words, the

plasma collapses to a cold, very dense region. The collapse time t =g. to decreases with

No(z), so initially dense regions collapse before tenuous ones. The initial stages of a

collapse with P=-3/2 is shown in Fig. 2. The density (34) is plotted as a function of x,

obtained by numerically inverting the coordinate transformation (26).

To elucidate the structure of the collapsing region, suppose the initial conditions are

nearly homogeneous with a small peak in the density at z=0, i.e.,

No(z) -1 + cp(z), (35)
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where E<<1 and p(z) has a maximum at z=O, where p(O)=l, and vanishes at infinity.

Close to the time when the collapse at z=0 occurs [i.e. when g-g,(0)], the density (33) is

to the lowest order in e equal to

(36)

where

(37)I 1+ g 1(2+ P)/y (I+P)
F 17z) 1g(0) <<.

In particular, if

(38)

where g ;:1, the density at the time of collapse becomes

(39)

close to the central density peak, regardless of other initial conditions. It is now

straightforward to invert the coordinate transformation (26), and express the density in

terms of x:

2g

N(g.(O), x)J[ 2+P %p ]2(g+1)+P Ix<z
(2(g +1)+P x j

- 14-

(40)

N~g~ - r 1 + F(g, z) 1 1/(2+p)

N Iz - 1+ F(g, z) - p(z) ,

p(z)_,1 (z /k4)2g, kz|<< Xz,

N(g. (0), z) -(kz/Z) 2g/(2+ P), |zl<c< Xz ,



We are now in a position to investigate the validity of the isobaric approximation

(30). If the expression for the density (36) obtained under this approximation is substituted

in the continuity equation (27) and the exact momentum equation (28), the resulting

velocity and pressure variation 6P can be calculated. It follows that

1 f p(z')dz'
v(, z)- y (1+ $)noto(1 + g.(0)) z[1 + F(g,z')- p(z')+

(41)

6P - M dz',
z

and at the time of the collapse at z =0, F -+0, we have

6P 2 3+P2g-2
- A-'( 2+ (42)

where cS m (yP/Mn)1/2 is the local sound speed, and

AMxXO g*(O)-(P+3/2)/(1+P) (43)

is a dimensionless parameter. Here co a cs(no, PO) is the sound speed at t =0, and

-x, z/no is the length scale of the initial perturbation. It is now clear from Eqs. (42)

and (43) that the isobaric/subsonic approximation (30) is valid throughout the collapse

provided A is small and

2- 3g
< .-3 (44)

2g -1

-15-



For a parabolic density maximum, g=1, this means that P<-1, whereas for a flat

profile, g - oo, we must require P<-3/2. In addition, there is another difference in the

nature of the collapse depending on whether P<-3/2. If this relation is not satisfied, the

parameter A is only small if the scale length of the perturbation %xO is sufficiently small.

But if s<-3/2, A can also be made small by making e small, since then g,(O) becomes

large. In other words, in the former case only perturbations of sufficiently short

wavelength satisfy the isobaric approximation, whereas in the latter case it is valid for

arbitrarily long-wavelength profiles provided the amplitude is small enough. It can be

shown that if the initial wavelength is so large that heat conduction is negligible at t =0, it

remains small throughout the collapse provided only P <-1. This is true even though the

collapsing region shrinks during the collapse, since the temperature falls at the same time.

We now turn our attention to the case when P1>-1. First of all, it should be noted

that, even though the isobaric approximation eventually breaks down, as demonstrated by

Eq. (42), it is still a good approximation in the early stages of the evolution of a system

with isobaric initial conditions. In particular, if the parameter A (see Eq. (43)) is small, the

density becomes significantly peaked, N >>1, before significant pressure variations have

had time to build up. Sooner or later, however, (and always before N -+ 00) the pressure

starts dropping, and, as a result, a collapse of a different nature takes place. This is most

clearly understood by considering the limit of very long wavelengths so that the density

remains nearly constant. In this case, the pressure is immediately obtained from the entropy

equation (29), giving

P(T, z) = Po(z)[1- t/to(z)' , (45)

just as in Eq. (24), but where PO now depends weakly on z. By inserting the expression

(45) into the continuity and momentum equations (27), (28), the relation
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- -- 1 -,e'to(z) d' (46)
ft -M& A

is obtained, and it is readily verified that the density hardly changes if ato(z)/az is small

enough. If the function to(z) has a minimum at t =0, the pressure (45) vanishes in a region

surrounding this point when t > to(0). The plasma flows, of course, towards this region

of low pressure, and it follows from the momentum equation (28) that the velocity in the

cold region (where P=0) is constant in time, v - v(z). As a result, the continuity equation

(27) gives

n~ 1 n- [to(O), z]+[t - to(o)] v'[to(o), z], (47)

predicting wave breaking and infinite density peaking when -C - to(O) - J/(nov'). In other

words, when 0 >-1, thermal collapse still occurs, but by a different mechanism, namely, as

a result of wave breaking following the complete cooling down of the plasma.

In the case of perturbations with shorter wavelengths (but still P>-1), the nature of

the collapse appears to be similar. Now the density has time to rise while the pressure is

falling, but in general the pressure still goes to zero before the density becomes infinite.

This can be seen from the integral of the entropy equation (29)

s(T, z) - SO(%, z). 1-e~ dT' (48)
to (z)f n(-z)

where Py - (2- y)/(y - 1), s - Pn~ is (the exponential of) the entropy. It is clear that s

vanishes when either n -+ oo or P -> 0. In order for the expression (48) to vanish,

however, the second term in the brackets must equal -1 if P>-1. Obviously, only very
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particular choices of the function n(t',z) approach infinity at exactly the same value of T as

this happens. (If P<-1, the integral need only diverge to ensure this behavior.) Moreover,

the continuity equation (27) shows that if n approaches infinity as

n oc (1 -T/ )a(49)

then a:1 unless ov/az becomes infinite. However, if this expression is used for n in the

entropy equation (29), the pressure becomes

P 0C (1 - -C/, , -a(2+P)]f(1+P) (0

which is finite at r -. only if a s1/(2 + P)<1. From these considerations we can

conclude that, in general, P -+ 0 before n -> oo, also for small wavelengths. After the

pressure vanishes, wave breaking again occurs, which gives rise to infinite density

peaking.

Finally, another interesting consequence of Eq. (48) should be pointed out.

Suppose that the initial conditions are isentropic, s=const. If P > PY regions with low

density (= high pressure) collapse before regions with large density, but if 0 < Py the

opposite occurs. The reason for this is that adiabatic compression of the plasma increases

the rate of cooling if 0 < Py but decreases it if P > Py .

To summarize the results concering the nonlinear evolution of plasma cooling down

according to Eq. (23), if -2< P<-1 (-2< P<-3/2 for flat profiles) the plasma collapses into a

region of infinite density while the pressure remains constant. If P>-1, the pressure first

vanishes, and density peaking occurs later as a result of wave breaking. Of course, the

density does become truly infinite (nor does the pressure actually vanish), but is limited by

processes we have ignored.
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As we noted in the beginning of this Section, the impurity radiation function L(T)

does not in general have L(T) oc Tf, as assumed above, even though it is sometimes

locally well approximated by such an expression. When the actual function L(T) is used,

the plasma passes through a series of stages, each of which is described by the local value

of sP.

Let us consider the behavior of a cooling SOL plasma in the dwell time between

two (type I) ELM heat bursts (~ 30 ms for current tokamaks). Fig. 1, where a coronal-

equilibrium model for L(T) is employed, suggests that, for the parameters chosen in this

figure, heat conduction stabilizes the radiation instability above T = TM =5eV. When the

plasma has cooled down to this temperature, instability sets in, and any density

perturbations present start growing. Since the convective (acoustic) time scale is relatively

short, the process is approximately isobaric, and is described by Eq. (29) with the pressure

evolution governed by the same equation taken with n - n.. It is an easy matter to solve

these equations numerically. The resulting evolution for an initially 10% density

perturbation, N=1.1, is shown in Fig.3. Apparently, the density first peaks, but later

decreases again, leaving only a comparatively small lasting trace. This behavior may be

understood by considering the equation governing the density as a function of pressure,

aN N I 2  P/2nN)] (51)
aP = YP [ L(P/2n..)

obtained by dividing the time derivative of the density with that of the pressure. The density

grows only as long as the second term in the brackets exceeds unity. But this is impossible

when N becomes sufficiently large, since then L(P/2n.N) is quite small. The point is that

L(T) is exponentially small for low T. Therefore P(T) - -d In Ifd In T drops below the

stability threshold P=-2 once the plasma becomes cold enough. After this has happened,

the region of rarefied plasma surrounding the collapse cools down faster than the collapsing
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region, "sucking out" plasma from the latter. As a result, the density peaking decreases.

However, since the cooling is now quite slow, residual plasma stratification may persist for

a long time. For instance, in the example shown in Fig. 3, N>3 still after 30 ms. This may

strongly affect the dynamics of the next ELM burst.

IV. Nonlinear propagating thermal fronts in the SOL during ELMs

In the preceding sections we have considered the effects of heat flux modulation

due to ELMs. However, ELM bursts are characterized not only by an increase of the heat

flux entering the SOL plasma, but also by a sizable particle flux from the bulk into the

SOL. In the present section we show that this may result in the formation of nonlinear

propagating thermal waves. Related waves were studied in Refs. 6 and 17.

Let us consider subsonic plasma flow with the plasma parameters only depending

on the single variable - x - Vt, where V =const.>O. In a frame moving with the

velocity V , assuming that the pressure is almost constant, P - P0 =const., and uniform

plasma parameters at --> cc, we find from Eqs. (2)-(4)

d dTK y j.dT -
-1 d- - -- - Q(T), (52)

where a(T) aQ((Po/2T),Po) and j., =const. is the plasma flux at -X 00. Generally

speaking, the function a(Te) - 0 may have a complicated dependence on the plasma

temperature, and have several equilibrium states,

a(Teq) - 0 , (53)
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characterized by different temperatures Tq. As we shall see, Eq. (52) describes a

nonlinear propagating thermal front separating one equilibrium state characterized by the

temperature Tq,1 , to another one with the temperature Te,2-

Introducing the function o({) by dft - i(T)dT, we can write Eq. (52) in the more

convenient form

d 20' aU(O') d(
- = - -o (d) , (54)

d a,& d

which is similar to the equation of frictional motion of a particle (0 is the "coordinate" of

the particle and is the "time") in the effective potential

T(1 )

U(U)=- fQ(T')w(T')dT' , (55)

Teq

where the "friction" coefficient st(0) oc j. is determined by the expression

(a) - -- Y jo /(y- -1)x(T(ft)) . (56)

An equation similar to Eq. (54) was derived in Ref. 17, where the authors, having

in mind a specific form of the effective potential U(0), concluded that the front-like

solution of Eq. (54) is uniquely determined by the function U(0). As we shall see, this

appears not to be true in general.

Let analyze the solution of Eq. (54) with the function U(0) shown in Fig. 4 where

the local maxima of U(10) correspond to *I - Teq, 1) and -02 -0(Te,2). At high

temperatures U(ft)-+oo since we expect the cooling function to vanish, leaving Q=-QH<O.
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We seek a solution switching the plasma from if to ft2, so the energy loss due to

"friction" has to make up for the "potential energy" difference between these states

AU - U(, 2 )- U(f 1 ) (57)

(in our particular case AU<0). However, if the "friction force" is weak, a "particle"

starting the motion from the "coordinate" O'i may pass through the "coordinate" !02 and be

reflected by the "potential" U(ft) near the "coordinate" *3 where U(ft3 )- U(f 1) (see

Fig. 4). Thus, the "particle" might make many bounces between points 'i and T1 until it

arrives at the point 02 (with zero "velocity", d0/d =0). In this case one can use

perturbation theory to determine the flux jo as a function of the number of oscillations Jb

in the potential well (in the limit Jb>>1). From Eq. (54) we find the variation of the

"energy", AE - (do/d )2 / 2, for one bounce (back and forth) between the points 01 and

03

A E - 22U()f (1&) 1dN . (58)

01

If the "potential energy" difference AU is small in comparison with the depths of the

potential wells in the range 0 4)<03, we can use the estimate (58) for all the oscillations

the particle executes until arriving at 0'2. Then, from Eqs. (57), (58) we find

jO (y1)AU { 2{U(i/ (0)I d 4 - (59)
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Thus, we see that Eq. (52) allow a family of front-like solutions taking the plasma from

one equilibrium state Te 1 to another one Teg, 2 through many oscillations between

temperatures Teq,1 and Teq, 3 >Teq, 2 , where Te, 3 corresponds to 03 . The question of

stability of these solutions requires further investigation, and is beyond the scope of the

present paper.

V. Conclusions

Let us summarize the general results of this paper and their relevance to present and future

tokamak experiments. As pointed out in the introduction, a SOL plasma cooled by impurity

radiation is highly likely to be unstable to the radiative condensation instability, at least in

the temperature interval surrounding the peaks in the radiation functions of any impurities

present. In Sec. I1 the linear stage of the instability is investigated. When high-frequency

("grassy") ELMs are present, parametric excitation of modified acoustic waves appears to

be possible. This is probably harmless in present-day devices since the propagation length

(22) required for significant amplification of the wave is quite long, but may be of

importance in reactor-size experiments. On the other hand, nonlinear radiative condensation

can probably occur in the dwell time between the bursts of type I ELMs, even in relatively

small tokamaks. For cooling functions of the form L(T)-T, where P>-2, this inevitably

leads to a localized thermal collapse of the plasma into very dense, cold filaments (by

different mechanisms depending on whether P>-1). More realistic cooling functions (e.g.,

corresponding to coronal equilibrium) are peaked around one or several temperatures,

below which they approach zero very quickly. This leads to more complicated behavior of

the condensing region, with the plasma typically first contracting and then expanding again.

It is then a matter of time scales what the consequences are. If the plasma is still stratified

when the next ELM burst strikes, its dynamics can be expected to be significantly affected.
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For instance, since the radiation function is proportional to n2, an inhomogeneous plasma

radiates more than a homogeneous one with the same average density. It should be noted

that to observe the filamentation in numerical simulations might require a very fine mesh

since the condensation length scale may be quite small.

ELM bursts involve both heat and particle fluxes. In Sec. IV, nonlinear solutions

describing travelling thermal waves are derived. These waves are characterized by different

temperatures in front of and behind the wave, are associated with fluxes of both heat and

particles, and may describe the behavior of the SOL plasma when suddenly heated by an

ELM burst.
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Figure Captions

1. The characteristic times of convection (-rb), conduction (-r,), and energy losses (-rr) due

to radiation from 0.2% beryllium in an ITER-like SOL plasma, ne=10 20 m-3, 1//=30m.

2. Isobaric collapse with P=-3/2, i.e. L(T)-T 3 /2, with an initial density profile

No(x)=1+0.2 [exp(-x 2) - exp(-x 2/4)/2], y=5/3. The curves show N(t,x) for t=O, t=20 tol,

and t=60 ltd.

3. Time evolution of a density perturbation N(t), with N(O)=1. 1 in a plasma cooling down

from T(O)=5 eVwith 0.2% Be impurity, ne=10 20 m-3.

4. Frictional motion of a particle in the potential U(ft), describing a thermal wave

connecting regions with equilibrium temperatures i't and ft2.
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