7 research outputs found

    Synthesis, Crystal structure, DFT calculations and antimicrobial activity of 4-(4-fluoro-phenyl)-2,6-dimethyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid diethyl ester

    Get PDF
    The title compound was synthesized and confirmed by FT-IR, 1H, 13C NMR analysis. The molecular structure of the compound was precisely determined by Single Crystal X-ray Diffraction (SC-XRD) analysis. The crystalized compound shows P21/C & monoclinic crystal system with cell parameters a = 9.7768 (5), b = 7.4005(3) and c = 24.8099 (12), β=93.734(2)°.The structural and electronic properties of the compound were carried out by Density Functional Theory (DFT) calculations. The compound exhibited H-bonding between N1-H1A-O1 with bond distance 2.98(7) A°).The energy gap Egap 4.53eV and Egap= 4.34eV for crystal and DFT method respectively. The molecular orbitals energies were studied through Highest Unoccupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) analysis. The softness and hardness of the molecule was studied through Global Chemical Reactivity Descriptors (GCRD). The electrophilic and nucleophilic characters were studied through Molecular Electrostatic Potential (MEP) studies. The antimicrobial studies were carried out by in-vitro method against 6 microorganisms

    In Situ Preparation of Novel Porous Nanocomposite Hydrogel as Effective Adsorbent for the Removal of Cationic Dyes from Polluted Water

    No full text
    The use of some hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-grafted-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by an in situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network decreased the swelling capacity and improved its ability towards MB dye removal. The adsorption process depended on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight

    Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review

    No full text
    Electrospun polymer nanofibers (EPNFs) as one-dimensional nanostructures are characterized by a high surface area-to-volume ratio, high porosity, large number of adsorption sites and high adsorption capacity. These properties nominate them to be used as an effective adsorbent for the removal of water pollutants such as heavy metals, dyes and other pollutants. Organic dyes are considered one of the most hazardous water pollutants due to their toxic effects even at very low concentrations. To overcome this problem, the adsorption technique has proven its high effectiveness towards the removal of such pollutants from aqueous systems. The use of the adsorption technique depends mainly on the properties, efficacy, cost and reusability of the adsorbent. So, the use of EPNFs as adsorbents for dye removal has received increasing attention due to their unique properties, adsorption efficiency and reusability. Moreover, the adsorption efficiency and stability of EPNFs in aqueous media can be improved via their surface modification. This review provides a relevant literature survey over the last two decades on the fabrication and surface modification of EPNFs by an electrospinning technique and their use of adsorbents for the removal of various toxic dyes from contaminated water. Factors affecting the adsorption capacity of EPNFs, the best adsorption conditions and adsorption mechanism of dyes onto the surface of various types of modified EPNFs are also discussed. Finally, the adsorption capacity, isotherm and kinetic models for describing the adsorption of dyes using modified and composite EPNFs are discussed

    Biocidal Polymers: Synthesis, Characterization and Antimicrobial Activity of Bis-Quaternary Onium Salts of Poly(aspartate-co-succinimide)

    No full text
    Microbial multidrug resistance presents a real problem to human health. Therefore, water-soluble polymers based on poly(aspartate-co-succinimide) were synthesized via reaction of poly(aspartate-co-succinimide) with bis-quaternary ammonium or quaternary salts. The resultant copolymers were characterized by various techniques such as FTIR, TGA, 1HNMR, 13CNMR and elemental microanalysis. Antimicrobial activities of the new onium salts were investigated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi, and the fungi; Candida albicans,Aspergillus niger, Cryptococcus neoformans and Aspergillus flavus by agar diffusion method. Antimicrobial activity was studied in terms of inhibition zone diameters, in addition to the estimation of minimal inhibitory concentration (MIC) of the prepared compounds. A. niger and E. coli were the most affected microorganisms among the tested microorganisms with an inhibition zone of 19–21 (mm) in case of biocides, (V) and (VII). The obtained results showed that the quaternary onium salts have higher activity compared to the aspartate copolymer with MIC concentrations of 25 mg/mL for (VII) and (V) and 50 mg/mL for (VI) and (IV)
    corecore