224 research outputs found

    A hybrid process combining ion exchange resin and bipolar membrane electrodialysis for reverse osmosis remineralization

    Get PDF
    A new reverse osmosis (RO) permeate remineralization process combining ion exchange resin and bipolar membrane electrodialysis (BMED) was developed. Its feasibility for hardness ions recovery and RO permeate remineralization was investigated. The effect of several operation conditions on the efficiency of the combined remineralization process was studied. Highly efficient cation exchange resin loading was achieved at a low flow rate and low feed solution concentration. The recovered calcium purity and yield considerably improved under gradient elution methods in comparison with commonly applied conventional isocratic elution methods using the same eluent quantity. The purity of the produced acid and base using BMED dropped noticeably with increasing feed NaCl concentration, presumably related to decreased permselectivity of the ion-exchange membranes. The drop in the purity of the calcium recovered when eluting the cation exchange resin with BMED-produced HCl in comparison with commercially available acid at 50 % yield was shown not to affect the remineralization process, where a dilution factor could be applied. This study confirmed the technical feasibility of the developed process for RO permeate remineralization. However, its application can be limited by the water source characteristics, the energy-intensive bipolar membrane process, and applied operational conditions, where more investigation is still needed.</p

    Discoloration of textile dyes by spent mushroom substrate of Agaricus bisporus

    Get PDF
    The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30–90 % and 5–85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8–58 % and 0–31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.</p

    Sensitivity of SDI for experimental errors

    Get PDF
    Silt density index (SDI) testing is a widely-accepted method for estimating the rate at which colloidal and particle fouling will occur in water purification systems when using reverse osmosis (RO) or nanofiltration (NF) membranes. However, the SDI has several deficiencies. For example, the SDI has no linear relationship with the particle concentration, is not based on any fouling mechanism, and is not corrected for temperature, pressure and membrane resistance. The accuracy and reproducibility of the SDI is often questioned. In this study, mathematical models were developed to investigate the sensitivity of SDI for the following types of errors: errors due to inaccurate lab or field equipment, systematic errors, and errors resulting from artifacts and personal observations and experience. The mathematical results were verified experimentally. Both the mathematical models and experimental results show that the membrane resistance RM has the highest impact on the SDI results. The allowable ASTM variation in RM is responsible for a deviation in SDI between 2.29 and 3.98 at a level of SDI = 3. Besides that, a 1 s error in measuring the time to collect the second sample t2 results in ±0.07 at SDIO = 3. The artifacts and personal experience also influence the SDI results. The total error in measuring SDI was estimated to be equal to ±2.11 in the field and only ±0.4 in the lab in level of SDIO = 3. Furthermore, several recommendations are mentioned based on these theoretical results and our personal experience. This study demonstrates the sensitivity of the SDI for errors in RM and the accuracy of the equipments, and explains the difficulties in reproducing SDI results for the same water

    Enzymatic and non-enzymatic removal of organic micropollutants with spent mushroom substrate of Agaricus bisporus

    Get PDF
    Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0–26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to &lt; 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L -1, respectively) as well as H 2O 2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs &gt; 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.</p

    Limitations, improvements and alternatives of the silt density index

    Get PDF
    Reverse osmosis (RO) membrane systems are widely used in the desalination of water. However, flux decline due to fouling phenomena in RO remains a challenge. To minimize fouling, a reliable index is necessary to predict the fouling potential of the RO feed water. The ASTM introduced the silt density index (SDI) as a standard fouling index to measure the fouling potential due to colloidal and suspended particles. For decades, the SDI is worldwide accepted and applied. There are growing doubts about the predictive value of this parameter. In addition there are several deficiencies observed, affecting the accuracy and reproducibility e.g. no correction factor for temperature, nor for variations in membrane resistance, and no linear correlation with the concentration of colloidal/suspended particles. This paper gives an overview of our work on limitations, improvements and alternatives for the SDI. Firstly, the influence of the applied 0.45 ÎĽm test membrane on the SDI will be investigated. Variations in SDI values can be attributed to differences in properties of these membranes. In order to quantify the influence of pressure, temperature and membrane resistance on the SDI a mathematical relation was developed between the SDI and the MFI0.45, assuming cake filtration. In addition, also other fouling mechanisms were incorporated in the model using the well-known blocking laws. Based on a cake filtration fouling mechanism and assuming 100% particle retention, the models were used to normalize the experimental SDI values for temperature, pressure and membrane resistance to the SDI+. By applying this normalization, the results of SDI tests carried out under different conditions and/or with different membranes can be compared easily as was proven experimentally in the lab and at a seawater desalination plant. Finally, an alternative filtration index will be introduced, the volume-based SDI_v. The SDI_v compares the initial flow rate to the flow rate after filtering a standard volume of feed water using MF membranes with an average pore size of 0.45 ÎĽm. Our experimental results show that SDI_v is independent of the membrane resistance. In that way, it eliminates most of the disadvantages of the SDI and has great potential to replace the SDI in the fiel

    A Fragmented Parallel Stream: The Bass Lines of Eddie Gomez in the Bill Evans Trio

    Get PDF
    Eddie Gomez was the bassist in the Bill Evans Trio for eleven years. His contribution to the group’s sound was considerable, but while there has been some recognition of his virtuoso solos in the trio there has been little academic interest in his bass lines. This essay examines bass lines from the album Since We Met, recorded in 1974 by Evans, Gomez and drummer Marty Morell. Analysis of the bass accompaniments to the piano solos on “Since We Met” and “Time Remembered” reveals that they form a fragmented two-feel. A traditional two-feel employs two notes to emphasise the first and third beats in bar of 4/4 time. In Gomez’s bass lines these two notes are frequently replaced with short rhythmic motifs. These motifs occur in a variety of forms and at different metric displacements that alternately propel and retard the forward motion of the music. Additionally, Gomez uses a wide range of register and varied articulations to create a richly diverse bass line. The resulting effect has often been interpreted as interactive or conversational with the soloist. However there is very little interaction between the bass line and Evans’ solo. The bass line is a parallel stream to the solo that energises and colours the music
    • …
    corecore