444 research outputs found

    Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products

    Get PDF
    In this study, the conditions are described for successfully cultivation, processing and applying alternative protein sources in (organic) pig and poultry diets under European climatic conditions, thereby taking sustainability characteristics, and legislative aspects into account

    Long-term effects of husbandry procedures on stress-related parameters in male mice of two strains

    Get PDF
    In socially unstable groups of male laboratory mice, individuals may experience a chronic stress situation. Previous experiments have shown that the transfer of specific olfactory cues during cage cleaning, and the provision of nesting material decrease aggression and stress in group-housed male mice. In this study, the combined effect of these husbandry procedures were tested for their long-term effect on stress in groups of moderately aggressive (BALB/c) and severely aggressive (CD-1) male mice. The physiological and behavioural stress-related parameters used were body weight, food and water intake, spleen and thymus weight, adrenal tyrosine hydroxylase activity, urine corticosterone levels and behaviour in a cage emergence test. Long-term provision of nesting material and its transfer during cage cleaning was found to influence several stress-related physiological parameters. Mice housed in cages enriched with nesting material had lower urine corticosterone levels and heavier thymuses, and they consumed less food and water than standard-housed mice. Furthermore, marked differences were found between strains. CD-1 mice were less anxious in the cage emergence test, weighed more, ate and drank more, and had heavier thymuses but lighter spleens and lower corticosterone levels than BALB/c mice. We conclude that the long-term provision of nesting material, including the transfer of nesting material during cage cleaning, reduces stress and thereby enhances the welfare of laboratory mice.</p

    Macrostructural analysis : unravelling polyphase glacitectonic histories

    Get PDF
    Many Pleistocene glacial profiles look extremely simple, comprising till, or glacitectonite, overlying older sediments or bedrock (Figure 4.1). In more complex sequences the till may itself be overlain by younger sediments laid down as the ice retreated or during a completely separate, later phase of advance. Macroscopically, subglacial traction tills (Evans et al., 2007) are typically massive, unstructured deposits suggesting that it should be relatively straightforward to unravel the glacitectonic deformation history recorded by the sequence. Many reconstructions do indeed look very simple, slabs of sediment have been tilted and stacked and then overridden by the glacier to cap the structure with till. Added to this is the use of vertical exaggeration which makes the whole structure look like alpine tectonics (for an example see fig. 5 in van Gijssel, 1987). Dropping the exaggeration led to the recognition that actually we were looking at much more horizontal structures, i.e. overriding nappes and not imbricated slabs (van der Wateren, 1987). Traditionally (van der Meer, 1987) glaciotectonics was thought to relate to large structures like big push moraines and not to smaller structures like drag structures underneath tills (Figure 4.2), let alone to the tills themselves. With the notion that deforming bed tills are tectonically and not sedimentologically structured and could be regarded as tectomicts (Menzies et al., 2006), comes the realisation that glacitectonics happens across a wide range of scales, from the microscopic to tens of kilometres. Only by realising the full range of glaciotectonic scales can we hope to understand the processes

    Hyperimmunoglobulinemia D and periodic fever : A new syndrome

    Get PDF
    Contains fulltext : 4434.pdf (publisher's version ) (Open Access

    Exploring uncertainties regarding unsolicited findings in genetic testing

    Get PDF
    Objectives: Non-normative uncertainty (uncertainty about empirical facts) and normative uncertainty (uncertainty about moral values or beliefs) regarding unsolicited findings (UFs) might play an important role in clinical genetics. Identifying normative uncertainty is of special interest since it might guide towards novel directions for counseling practice. This study aims to gain insight into the role of non-normative and normative uncertainty regarding UFs, as expressed by counselees and counselors. Methods: We performed a secondary qualitative analysis of interviews with counselees (n = 20) and counselors (n = 20) who had been confronted with UFs. Following a deductive approach, we used Han et al.’s existing theoretical framework of uncertainty, in which we additionally incorporated normative uncertainty. Results: Major issues of non-normative uncertainty were practical and personal for counselees, whilst counselors’ uncertainty pertained mainly to scientific issues. Normative uncertainty was a major theme throughout the interviews. We encountered the moral conflicts of autonomy vs. beneficence and non-maleficence and of autonomy vs. truthfulness. Conclusion: Non-normative uncertainty regarding UFs highlights the need to gain more insight in their penetrance and clinical utility. This study suggests moral conflicts are a major source of feelings of uncertainty in clinical genetics. Practice implications: Exploring counselees’ non-normative uncertainties and normative conflicts seems a prerequisite to optimize genetic counseling.</p

    Designing matrix models for fluorescence energy transfer between moving donors and acceptors

    Get PDF
    A recipe is given for designing theoretical models for donor-acceptor systems in which fluorescence energy transfer and motion takes place simultaneously. This recipe is based on the idea that a system exhibiting both motion and fluorescence energy transfer can be modeled by specifying a number of "states" and the rates of transitions between them. A state in this context is a set of specific coordinates and conditions that describe the system at a certain moment in time. As time goes on, the coordinates and conditions for the system change, and this evolution can be described as a series of transitions from one state to the next. The recipe is applied to a number of example systems in which the donors and/or acceptors undergo either rotational or translational motion. In each example, fluorescence intensities and anisotropies for the donor and acceptor are calculated from solutions of eigensystems. The proposed method allows for analyzing time-resolved fluorescence energy transfer data without restrictive assumptions for motional averaging regimes and the orientation factor. It is shown that the fluorescence quantities depend on the size of the motional step (i.e., on the number of states), only if fluorescence energy transfer occurs. This finding indicates that fluorescence energy transfer studies may reveal whether the dynamics of a system (e.g., a protein) is better described in terms of transitions between a relatively small number of discrete states (jumping) or a large number of dense states (diffusion)
    • …
    corecore