4 research outputs found

    CALYPSO 2019 Cruise Report: field campaign in the Mediterranean

    Get PDF
    This cruise aimed to identify transport pathways from the surface into the interior ocean during the late winter in the Alborán sea between the Strait of Gibraltar (5°40’W) and the prime meridian. Theory and previous observations indicated that these pathways likely originated at strong fronts, such as the one that separates salty Mediterranean water and the fresher water in owing from the Atlantic. Our goal was to map such pathways and quantify their transport. Since the outcropping isopycnals at the front extend to the deepest depths during the late winter, we planned the cruise at the end of the Spring, prior to the onset of thermal stratification of the surface mixed layer.Funding was provided by the Office of Naval Research under Contract No. N000141613130

    Study on the Synthesis, Structural, Optical and Electrical Properties of ZnO and Lanthanum Doped ZnO Nano Particles by Sol-Gel Method

    No full text
    International audienceIn this study, pure and lanthanum doped ZnO nano particles have been succaessfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcination at 600°C for 2h. The effect of lanthanum incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescence as well as conductivity properties were found to be enhanced for the La doped ZnO nanoparticles. Introduction. Synthesize and study of nanostructured materials have become a major attractive interdisciplinary area of research over the past few decades. Recently rare earth ion doped II-IV semiconductor nano particles have received much attention because such doping can modify and improve optical properties of II-VI semiconductor nanoparticles by large amount [1-4]. Zinc Oxide is a transparent electro conductive and piezo electric material. Zinc Oxide is an excellent ultraviolet absorber and antibacterial agent. ZnO is one of the metal oxides which attracts due to its direct band gap energy of 3.37eV and large excitation binding energy of 60 meV at room temperature which provides excitonic emission more efficiently even at high temperature. ZnO is particularly important because of their unique optical/electronic properties and promising applications in various fields such as photonic catalysis [5], light emitting diodes [6], field emission, gas sensors [7], fluorescent materials and solar cells [8]

    Photoluminescences properties of lanthanum-silver co-doped ZnO nano particles

    No full text
    Recently, transition metal (TM) and rare earth ion doped II–VI semiconductor nanoparticles have received much attention because such doping can modify and improve optical properties of II–VI semiconductor nanoparticles by large amount. In this study, undoped, La doped and La+Ag co-doped ZnO nano particles have been successfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcinated at 600 °C for 2 h. The effect of lanthanum and lanthanum-silver incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescences properties were found to be enhanced for the La and La+Ag co-doped ZnO nanoparticles
    corecore