Study on the Synthesis, Structural, Optical and Electrical Properties of ZnO and Lanthanum Doped ZnO Nano Particles by Sol-Gel Method

Abstract

International audienceIn this study, pure and lanthanum doped ZnO nano particles have been succaessfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcination at 600°C for 2h. The effect of lanthanum incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescence as well as conductivity properties were found to be enhanced for the La doped ZnO nanoparticles. Introduction. Synthesize and study of nanostructured materials have become a major attractive interdisciplinary area of research over the past few decades. Recently rare earth ion doped II-IV semiconductor nano particles have received much attention because such doping can modify and improve optical properties of II-VI semiconductor nanoparticles by large amount [1-4]. Zinc Oxide is a transparent electro conductive and piezo electric material. Zinc Oxide is an excellent ultraviolet absorber and antibacterial agent. ZnO is one of the metal oxides which attracts due to its direct band gap energy of 3.37eV and large excitation binding energy of 60 meV at room temperature which provides excitonic emission more efficiently even at high temperature. ZnO is particularly important because of their unique optical/electronic properties and promising applications in various fields such as photonic catalysis [5], light emitting diodes [6], field emission, gas sensors [7], fluorescent materials and solar cells [8]

    Similar works