41 research outputs found
Deceleration and trapping of heavy diatomic molecules using a ring-decelerator
We present an analysis of the deceleration and trapping of heavy diatomic
molecules in low-field seeking states by a moving electric potential. This
moving potential is created by a 'ring-decelerator', which consists of a series
of ring-shaped electrodes to which oscillating high voltages are applied.
Particle trajectory simulations have been used to analyze the deceleration and
trapping efficiency for a group of molecules that is of special interest for
precision measurements of fundamental discrete symmetries. For the typical case
of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown
to outperform traditional and alternate-gradient Stark decelerators by at least
an order of magnitude. If further cooled by a stage of laser cooling, the
decelerated molecules allow for a sensitivity gain in a parity violation
measurement, compared to a cryogenic molecular beam experiment, of almost two
orders of magnitude
Slowing polar molecules using a wire Stark decelerator
We have designed and implemented a new Stark decelerator based on wire
electrodes, which is suitable for ultrahigh vacuum applications. The 100
deceleration stages are fashioned out of 0.6 mm diameter tantalum and the
array's total length is 110 mm, approximately 10 times smaller than a
conventional Stark decelerator with the same number of electrode pairs. Using
the wire decelerator, we have removed more than 90% of the kinetic energy from
metastable CO molecules in a beam.Comment: updated version, added journal referenc
Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum
High-gain resonant nonlinear Raman scattering on trapped cold atoms within a
high-fineness ring optical cavity is simply explained under a nonlinear
opto-mechanical mechanism, and a proposal using it to detect frequency of
micro-trap on atom chip is presented. The enhancement of scattering spectrum is
due to a coherent Raman conversion between two different cavity modes mediated
by collective vibrations of atoms through nonlinear opto-mechanical couplings.
The physical conditions of this technique are roughly estimated on Rubidium
atoms, and a simple quantum analysis as well as a multi-body semiclassical
simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure
Trapping molecules on a chip
Contains fulltext :
99125.pdf (publisher's version ) (Closed access
The radiative lifetime of metastable CO (a 3∏, v = 0)
Contains fulltext :
36608.pdf (preprint version ) (Open Access