766 research outputs found
Chaos-Order Transition in Matrix Theory
Classical dynamics in SU(2) Matrix theory is investigated. A classical
chaos-order transition is found. For the angular momentum small enough (even
for small coupling constant) the system exhibits a chaotic behavior, for
angular momentum large enough the system is regular.Comment: 14 pages, Latex, 10 figure
Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks
The origin of the micro-Gauss magnetic fields in galaxy clusters is one of
the outstanding problem of modern cosmology. We have performed
three-dimensional particle-in-cell simulations of the nonrelativistic Weibel
instability in an electron-proton plasma, in conditions typical of cosmological
shocks. These simulations indicate that cluster fields could have been produced
by shocks propagating through the intergalactic medium during the formation of
large-scale structure or by shocks within the cluster. The strengths of the
shock-generated fields range from tens of nano-Gauss in the intercluster medium
to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure
Surface Electronic Structures and Field Emission Currents at Sodium Overlayers on Low-Index Tungsten Surfaces
The total energy distributions (TEDs) of the emission currents in field
emission and surface photofield emission and the overlayer-induced
modifications in the surface electronic structures from the technologically
important W surfaces with the commensurate W(100)/Na c(2x2), W(110)/Na (2x2)
and W(111)/Na (1x1) overlayers are calculated. The TEDs obtained by our recent
numerical method that extends the full-potential linear augmented plane wave
method for the electronic structures to the study of field and photofield
emission are used to interpret the shifts of the peaks in the experimental TEDs
in field emission and photofield emission from the W(100) and W(110) surfaces
at sub-monolayer and monolayer Na coverage. Hybridization of the 3s Na states
with the pairs of dz2-like surface states of the strong Swanson hump in clean
W(100) and surface resonances in clean W(111) below the Fermi energy shifts
these W states by about -1.2 eV and -1.0 eV, thus stabilizing these states, to
yield new strong peaks in the TEDs in field emission and photofield emission
from W(100)/Na c(2x2) and W(111)/Na (1x1) respectively. The effect of Na
intralayer interactions are discussed and are shown to shift the strong s- and
p-like peaks in the surface density of states of W(110) below and above the
Fermi energy respectively to lower energy with increased Na coverage, in
agreement with experiments.Comment: 12 page
Hyperaccreting Neutron-Star Disks and Neutrino Annihilation
Newborn neutron stars surrounded by hyperaccreting and neutrino-cooled disks
may exist in some gamma-ray bursts (GRBs) and/or supernovae (SNe). In this
paper we further study the structure of such a neutron-star disk based on the
two-region (i.e., inner & outer) disk scenario following our previous work, and
calculate the neutrino annihilation luminosity from the disk in various cases.
We investigate the effects of the viscosity parameter, energy parameter
(measuring the neutrino cooling efficiency of the inner disk) and outflow
strength on the structure of the entire disk as well as the effect of emission
from the neutron star surface boundary emission on the total neutrino
annihilation rate. The inner disk satisfies the entropy-conservation or the
advection-dominated self-similar structure depending on the energy parameter.
An outflow from the disk decreases the density and pressure but increases the
thickness of the disk. Moreover, compared with the black-hole disk, the
neutrino annihilation luminosity above the neutron-star disk is higher, and the
neutrino emission from the boundary layer could increase the neutrino
annihilation luminosity by about one order of magnitude higher than the disk
without boundary emission. The neutron-star disk with the advection-dominated
inner disk could produce the highest neutrino luminosity while the disk with an
outflow has the lowest. Although a heavily mass-loaded outflow from the neutron
star surface at early times of neutron star formation prevents the outflow
material from being accelerated to a high bulk Lorentz factor, an energetic
ultrarelativistic jet via neutrino annihilation can be produced above the
stellar polar region at late times if the disk accretion rate and the neutrino
emission luminosity from the surface boundary layer are sufficiently high.Comment: 46 pages, 11 figures, 4 tables, improved version following the
referee's comments, accepted for publication in Ap
Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL
New laboratory data of CHCHCN (vinyl cyanide) in its ground and
vibrationally excited states at the microwave to THz domain allow searching for
these excited state transitions in the Orion-KL line survey.
Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz
spectrum provided measurements of CHCHCN covering a spectral range of
18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the
18-40 GHz region and by ab-initio anharmonic force field calculations. For
analyzing the emission lines of CHCHCN species detected in Orion-KL we used
the excitation and radiative transfer code (MADEX) at LTE conditions. The
rotational transitions of the ground state of this molecule emerge from four
cloud components of hot core nature which trace the physical and chemical
conditions of high mass star forming regions in the Orion-KL Nebula. The total
column density of CHCHCN in the ground state is (3.00.9)x10
cm. We report on the first interstellar detection of transitions in the
v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in
Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such
as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the
v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are
populated under warm and dense conditions, so they probe the hottest parts of
the Orion-KL source. Column density and rotational and vibrational temperatures
for CHCHCN in their ground and excited states, as well as for the
isotopologues, have been constrained by means of a sample of more than 1000
lines in this survey. Moreover, we present the detection of methyl isocyanide
(CHNC) for the first time in Orion-KL and a tentative detection of vinyl
isocyanide (CHCHNC) and give column density ratios between the cyanide and
isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table
The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations
Long-lived >100 MeV emission has been a common feature of most Fermi-LAT
detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs
080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent
with being produced by synchrotron emission of electrons accelerated to high
energy by the relativistic collisionless shock propagating into the weakly
magnetized medium. Here we show that this high-energy afterglow emission
constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8}
mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than
the previous constraint by X-ray afterglow observations on day scale. This
suggests that the preshock magnetic field is strongly amplified, most likely by
the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte
The termination shock of a magnetar wind: a possible origin of gamma-ray burst X-ray afterglow emission
Context: Swift observations suggest that the X-ray afterglow emission of some
gamma-ray bursts (GRB) may have internal origins, and the conventional external
shock (ES) cannot be the exclusive source of the afterglow emission. Aims: If
the central compact objects of some GRBs are millisecond magentars, the
magnetar winds could play an important role in the (internal) X-ray afterglow
emission, which is our focus here. Methods: The dynamics and the synchrotron
radiation of the termination shock (TS) of the magmnetar winds, as well as the
simultaneous GRB ES, are investigated by considering the magnetization of the
winds. Results: As a result of the competition between the emission of the wind
TS and the GRB ES, two basic types of X-ray afterglows are predicted, i.e., the
TS-dominated and the ES-dominated types. Moreover, our results also show that
both of the two types of afterglows have a shallow-decay phase and a
normal-decay one, as observed by the \textit{Swift} satellite. This indicates
that some observed X-ray afterglows could be (internally) produced by the
magnetar winds, but not necessarily GRB ESs.Comment: 5 pages, 3 figure
Shallow decay phase of GRB X-ray afterglows from relativistic wind bubbles
The postburst object of a GRB is likely to be a highly magnetized, rapidly
rotating compact object (e.g., a millisecond magnetar), which could produce an
ultrarelativistic electron-positron-pair wind. The interaction of such a wind
with an outwardly expanding fireball ejected during the burst leads to a
relativistic wind bubble (RWB). We numerically calculate the dynamics and
radiative properties of RWBs and use this model to explain the shallow decay
phase of the early X-ray afterglows observed by Swift. We find that RWBs can
fall into two types: forward-shock-dominated and reverse-shock-dominated
bubbles. Their radiation during a period of seconds is
dominated by the shocked medium and the shocked wind, respectively, based on
different magnetic energy fractions of the shocked materials. For both types,
the resulting light curves always have a shallow decay phase. In addition, we
provide an example fit to the X-ray afterglows of GRB 060813 and GRB 060814 and
show that they could be produced by forward-shock-dominated and
reverse-shock-dominated bubbles, respectively. This implies that, for some
early afterglows (e.g., GRB 060814), the long-lasting reverse shock emission is
strong enough to explain their shallow decay phase.Comment: 5 pages, 4 figures, Accepted for Publication in A&
- …