32 research outputs found

    Fuel performance modeling results for representati

    Get PDF
    The objective of the present study was to predic

    Pressure-induced magnetic collapse and metallization of TlFe1.6Se2\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}

    Full text link
    The crystal structure, magnetic ordering, and electrical resistivity of TlFe1.6Se2 were studied at high pressures. Below ~7 GPa, TlFe1.6Se2 is an antiferromagnetically ordered semiconductor with a ThCr2Si2-type structure. The insulator-to-metal transformation observed at a pressure of ~ 7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ~ 7.5 - 11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.Comment: 12 pages, 5 figure

    Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4

    Get PDF
    Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired, however, superconductivity in such materials is typically limited to two- or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide \b{eta}-Bi4I4 by applying high pressure. Superconductivity is observed in \b{eta}-Bi4I4 for pressures where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural-electronic instability.Comment: 22 pages, 4 figures, submitted to journa

    Superconductivity in Weyl Semimetal Candidate MoTe2

    Get PDF
    In recent years, layered transition-metal dichalcogenides (TMDs) have attracted considerable attention because of their rich physics; for example, these materials exhibit superconductivity, charge density waves, and the valley Hall effect. As a result, TMDs have promising potential applications in electronics, catalysis, and spintronics. Despite the fact that the majority of related research focuses on semiconducting TMDs (e.g., MoS2), the characteristics of WTe2 are provoking strong interest in semimetallic TMDs with extremely large magnetoresistance, pressure-driven superconductivity, and the predicted Weyl semimetal (WSM) state. In this work, we investigate the sister compound of WTe2, MoTe2, which is also predicted to be a WSM and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that MoTe2 exhibits superconductivity with a resistive transition temperature Tc of 0.1 K. The application of a small pressure (such as 0.4 GPa) is shown to dramatically enhance the Tc, with a maximum value of 8.2 K being obtained at 11.7 GPa (a more than 80-fold increase in Tc). This yields a dome-shaped superconducting phase diagram. Further explorations into the nature of the superconductivity in this system may provide insights into the interplay between strong correlations and topological physics.Comment: 20 pages, 5 figure

    Pure Gauge Configurations and Tachyon Solutions to String Field Theories Equations of Motion

    Full text link
    In constructions of analytical solutions to open string field theories pure gauge configurations parameterized by wedge states play an essential role. These pure gauge configurations are constructed as perturbation expansions and to guaranty that these configurations are asymptotical solutions to equations of motions one needs to study convergence of the perturbation expansions. We demonstrate that for the large parameter of the perturbation expansion these pure gauge truncated configurations give divergent contributions to the equation of motion on the subspace of the wedge states. We perform this demonstration numerically for the pure gauge configurations related to tachyon solutions for the bosonic and the NS fermionic SFT. By the numerical calculations we also show that the perturbation expansions are cured by adding extra terms. These terms are nothing but the terms necessary to make valued the Sen conjectures.Comment: 30 pages, 9 figures, references added and conclusion extende

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric
    corecore