97 research outputs found
ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ C-ΠΊΠΎΠ½ΡΠ΅Π²ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ΅Π½Π°Π»Π°Π·Ρ-1 ΠΈ ΡΠ΅Π½Π°Π»Π°Π·Ρ-2 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΊΠΎΠ΄ΠΈΡΡΠ΅ΠΌΡΡ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠΊΠ·ΠΎΠ½Π°ΠΌΠΈ
A method for generation of C-terminal amino acid sequences fused to dihydrofolate reductase (DHFR) and specific for RNLS1 and RNLS2 isoforms of renalase is described. It includes synthesis of nucleotide sequences of alternative exons of RNLS1-9ex and RNLS2-10ex, determining the differences in the primary structure of these proteins, their fusion with the coding sequence of DHFR and expression of these genetic constructs in cells of the E. coli Rosetta cells. Chromatographic purification on a column containing Ni Sepharose resulted in highly purified preparations of reombinant ReI-9ex and ReII-10ex proteins with an electrophoretic purity of about 95%.ΠΠΏΠΈΡΠ°Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π‘-ΠΊΠΎΠ½ΡΠ΅Π²ΡΡ
Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ
ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ, ΡΠ»ΠΈΡΡΡ
Ρ Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΡΠΎΠ»Π°ΡΡΠ΅Π΄ΡΠΊΡΠ°Π·ΠΎΠΉ (DHFR) ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΡΡ
Π΄Π»Ρ ΠΈΠ·ΠΎΡΠΎΡΠΌ ΡΠ΅Π½Π°Π»Π°Π·Ρ RNLS1 ΠΈ RNLS2. ΠΠ½ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠΈΠ½ΡΠ΅Π· Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π½ΡΡ
ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΡΡ
ΡΠΊΠ·ΠΎΠ½ΠΎΠ² RNLS1-9ex ΠΈ RNLS2-10ex, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΡ
ΡΠ°Π·Π»ΠΈΡΠΈΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΡΡΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ², ΠΈΡ
ΡΠ»ΠΈΡΠ½ΠΈΠ΅ (Ρ.Π½. ΡΡΡΠΆΠ½) Ρ ΠΊΠΎΠ΄ΠΈΡΡΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ DHFR ΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π΄Π°Π½Π½ΡΡ
Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΡΡΠ°ΠΌΠΌΠ°-ΠΏΡΠΎΠ΄ΡΡΠ΅Π½ΡΠ° E. Coli Rosetta. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΠΈΡΡΠΊΠΈ Π½Π° ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ΅, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ Ni-ΡΠ΅ΡΠ°ΡΠΎΠ·Ρ, Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π²ΡΡΠΎΠΊΠΎΠΎΡΠΈΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΡΠ΅ΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠΎΠ² ReI-9ex ΠΈ ReII-10ex Ρ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠΎΡΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ 95%
Π£ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΠ·ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π΄Π»Ρ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊΠΠΠ Π³Π΅Π½Π° ΡΠ΅Π½Π°Π»Π°Π·Ρ ΠΊΡΡΡΡ
We have improved our previously developed method of exon cloning of cDNA of eukaryotic genes to obtain the rat renalase gene cDNA. In contrast to the previously used step-by-step pairwise assembly of exons, in this work the procedure of full-length cDNA preparation was shortened due to simultaneous assembly of four neighboring exons at once (exons 1-4 and exons 6-9 of the rat renalase gene). The two obtained sequences (exons 1-4 and 6-9) were combined into a full-length cDNA of the rat renalase gene. The cDNA synthesized in this way was cloned into the prokaryotic vector pET-28a(+), which was then expressed in E. coli cells. The correctness of this approach was confirmed by sequencing resultant cDNA sequencing, which showed full (100%) identity with the nucleotide sequence available in the GenBank database (accession code: GenBankNM_001014167).Π£ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ ΡΠ°Π½Π΅Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΊΠ·ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΠΠ ΡΡΠΊΠ°ΡΠΈΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π³Π΅Π½ΠΎΠ² Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΊΠΠΠ Π³Π΅Π½Π° ΡΠ΅Π½Π°Π»Π°Π·Ρ ΠΊΡΡΡΡ. Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΡΠ°Π½Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ°Π΄ΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΊΠ·ΠΎΠ½ΠΎΠ², Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΊΠΠΠ Π±ΡΠ»Π° ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π° Π·Π° ΡΡΠ΅Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΡΠ°Π·Ρ ΡΠ΅ΡΡΡΠ΅Ρ
ΡΠΎΡΠ΅Π΄Π½ΠΈΡ
ΡΠΊΠ·ΠΎΠ½ΠΎΠ² (1-4 ΠΈ 6-9 Π³Π΅Π½Π° ΠΊΡΡΡΡ). ΠΠ²Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ (ΡΠΊΠ·ΠΎΠ½ΠΎΠ² 1-4 ΠΈ 6-9) ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΡΠ»ΠΈ Π² ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΡ ΠΊΠΠΠ Π³Π΅Π½Π° ΡΠ΅Π½Π°Π»Π°Π·Ρ ΠΊΡΡΡΡ. Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΊΠΠΠ ΠΊΠ»ΠΎΠ½ΠΈΡΠΎΠ²Π°Π»ΠΈ Π² ΠΏΡΠΎΠΊΠ°ΡΠΈΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π²Π΅ΠΊΡΠΎΡ pET-28a(+) Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠ΅ΠΉ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
E. coli. ΠΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΡΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΠΏΡΡΠ΅ΠΌ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠΠΠ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΠΏΠΎΠ»Π½ΠΎΠ΅ (100%) ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Ρ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ Π±Π°Π·Ρ Π΄Π°Π½Π½ΡΡ
(ΠΊΠΎΠ΄ Π΄ΠΎΡΡΡΠΏΠ° GenBankNM_001014167)
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΠΎΠΉ ΡΠ΅Π½Π°Π»Π°Π·Ρ Π² ΠΏΡΠΎΠΊΠ°ΡΠΈΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠ»Π΅ΡΠΊΠ°Ρ
Renalase (RNLS) is a flavoproteinin which its N-terminal peptide (residues 1-17) has several important functions. In cells, it participates in the formation of the so-called Rossmanfold (residues 2-35), needed for Β«accommodationΒ» of the FAD cofactor and for performing the catalytic functions of RNLS as a FAD-dependent oxidoreductase (EC 1.6.3.5). RNLS secretion into the extracellular space is accompanied by cleavage of this peptide. The resultant truncated extracellular RNLS cannot bind FAD and therefore performs various noncatalytic functions. In this work, we have performed expression the genetic construct encoding RNLS lacking its N-terminal signal peptide (tRNLS) in E. coli Rosetta (DE3) cells. The recombinant protein was accumulated in inclusion bodies in an insoluble form, which could be solubilized in the presence of a high concentration of urea or guanidine chloride. In contrast to full-length RNLS, which was effectively solubilized in the presence of 8 M urea, tRNLS was preferentially solubilized in the presence of 6 M guanidine chloride.Π Π΅Π½Π°Π»Π°Π·Π° (RNLS) β ΡΠ»Π°Π²ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½, N-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠΉ ΠΏΠ΅ΠΏΡΠΈΠ΄ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ (1-17 Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ
ΠΎΡΡΠ°ΡΠΊΠ° (Π°.ΠΎ.)) Π²ΡΠΏΠΎΠ»Π½ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π°ΠΆΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ. Π ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΠΎΠ½ ΡΡΠ°ΡΡΠ²ΡΠ΅Ρ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°ΠΊ Π³Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠΊΠ»Π°Π΄ΠΊΠΈ Π ΠΎΡΡΠΌΠ°Π½Π° (2-35 Π°.ΠΎ.), Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠΉ Π΄Π»Ρ Β«ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΡΒ» ΠΊΠΎΡΠ°ΠΊΡΠΎΡΠ° FAD ΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ RNLS Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ FAD-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΎΠΊΡΠΈΠ΄ΠΎΡΠ΅Π΄ΡΠΊΡΠ°Π·Ρ (ΠΠ€ 1.6.3.5). ΠΡΠΈ ΡΠ΅ΠΊΡΠ΅ΡΠΈΠΈ RNLS Π²ΠΎ Π²Π½Π΅ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ ΡΡΠΎΡ ΠΏΠ΅ΠΏΡΠΈΠ΄ ΠΎΡΡΠ΅ΠΏΠ»ΡΠ΅ΡΡΡ, Π° ΠΎΠ±ΡΠ°Π·ΡΡΡΠ°ΡΡΡ ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½Π°Ρ Π²Π½Π΅ΠΊΠ»Π΅ΡΠΎΡΠ½Π°Ρ RNLS Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡ FAD ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π½Π΅ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΌΡ ΠΎΡΡΡΠ΅ΡΡΠ²ΠΈΠ»ΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ, ΠΊΠΎΠ΄ΠΈΡΡΡΡΠ΅ΠΉ Π»ΠΈΡΠ΅Π½Π½ΡΡ N-ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΠΏΡΠΈΠ΄Π° RNLS (tRNLS), Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
E. coli Rosetta (DE3). ΠΠ°ΠΊ ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠΉ RNLS, ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½Π°Ρ tRNLS Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΡΡΡ Π² ΡΠ΅Π»ΡΡΠ°Ρ
Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π² Π½Π΅ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΠΎΠΉ ΡΠΎΡΠΌΠ΅, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠ΅ΡΠ΅Π²Π΅Π΄Π΅Π½Π° Π² ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ ΡΠΎΡΠΌΡ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ ΠΈΠ»ΠΈ Π³ΡΠ°Π½ΠΈΠ΄ΠΈΠ½Ρ
Π»ΠΎΡΠΈΠ΄Π°. ΠΡΠΈ ΡΡΠΎΠΌ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠΉ RNLS, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΠ»ΡΠ±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»Π°ΡΡ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ 8 Π ΠΌΠΎΡΠ΅Π²ΠΈΠ½Ρ, Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π°Ρ ΡΠΎΠ»ΡΠ±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ tRNLS Π±ΡΠ»Π° Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠ° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ 6 Π Π³ΡΠ°Π½ΠΈΠ΄ΠΈΠ½Ρ
Π»ΠΎΡΠΈΠ΄Π°
Phosphorus-based compounds for EUV multilayer optics materials
We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (Ξ» β9.2 nm). Mo, Ag, Ru, Rh, and Pd were considered for applications as reflector materials. Our calculations for multilayer structures with perfect interfaces show that the Pd/BP material combination suggests the highest reflectivity values, exceeding 70% within the 9.2 β 10.0 nm spectral range. We also discuss the potential of fabrication of BP-based multilayer structures for optical applications in the extreme ultraviolet rang
Multiple Palaeoproterozoic carbon burial episodes and excursions
Organic-rich rocks (averaging 2β5% total organic carbon) and positive carbonate-carbon isotope excursions (View the MathML source and locally much higher, i.e. the Lomagundi-Jatuli Event) are hallmark features of Palaeoproterozoic successions and are assumed to archive a global event of unique environmental conditions following the c. 2.3 Ga Great Oxidation Event. Here we combine new and published geochronology that shows that the main Palaeoproterozoic carbon burial episodes (CBEs) preserved in Russia, Gabon and Australia were temporally discrete depositional events between c. 2.10 and 1.85 Ga. In northwest Russia we can also show that timing of the termination of the Lomagundi-Jatuli Event may have differed by up to 50 Ma between localities, and that Ni mineralisation occurred at c. 1920 Ma. Further, CBEs have traits in common with Mesozoic Oceanic Anoxic Events (OAEs); both are exceptionally organic-rich relative to encasing strata, associated with contemporaneous igneous activity and marked by organic carbon isotope profiles that exhibit a stepped decrease followed by a stabilisation period and recovery. Although CBE strata are thicker and of greater duration than OAEs (100 s of metres versus metres, βΌ106 years versus βΌ105 years), their shared characteristics hint at a commonality of cause(s) and feedbacks. This suggests that CBEs represent processes that can be either basin-specific or global in nature and a combination of circumstances that are not unique to the Palaeoproterozoic. Our findings urge circumspection and re-consideration of models that assume CBEs are a Deep Time singularity
Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΠΎΠΌΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ ΠΌΠΎΠ·Π³Π° ΠΌΡΡΠ΅ΠΉ
Isatin (indol-2,3-dione) is an endogenous indole, exhibiting various biological activities that are realized via its interacts with numerous target proteins (so-called isatin-binding proteins). To date, isatin-binding proteins have been characterized in the brain of mice and rats. In this study we have performed a comparative proteomic analysis of the isatin-binding proteins of the mouse liver and brain. Proteomic profiling of clarified lysates of membrane and soluble fractions of liver and brain homogenates was performed using 5-aminocaproyl-isatin as an affinity ligand. During affinity based separation of isatin-binding proteins of soluble and membrane fractions of mouse brain homogenates lysed with Triton X-100, 63 individual proteins were identified. A similar separation of mouse liver homogenate fractions during affinity chromatography resulted in identification of 80 proteins. All identified liver and brain proteins belonged to the following functional groups: (I) Carbohydrate metabolism and energy generation; (II) Lipid metabolism; (III) Metabolism of nucleotides and amino acids; (IV) Formation of the cytoskeleton, exocytosis; (V) Regulation of gene expression, cell division and differentiation; (VI) Antioxidant and protective proteins; (VII) Signal transmission and regulation of enzyme activity. The total number of isatin-binding proteins common for the brain and liver was only 12. The most common for the brain and liver of isatin-binding proteins was found in group VI (antioxidant and protective proteins), complete absence of coincidence in group II (lipid metabolism) and group IV (formation of the cytoskeleton, exocytosis). The observed differences in the profile of isatin-binding proteins appear to play an important role in the specific effects of isatin in certain organs.ΠΠ·Π°ΡΠΈΠ½ (ΠΈΠ½Π΄ΠΎΠ»-2,3-Π΄ΠΈΠΎΠ½) β ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΠΉ ΠΈΠ½Π΄ΠΎΠ», ΠΏΡΠΎΡΠ²Π»ΡΡΡΠΈΠΉ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ Π²ΠΈΠ΄Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈ Π΅Π³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-ΠΌΠΈΡΠ΅Π½ΡΠΌΠΈ (Ρ.Π½. ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ). ΠΠ° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠ΅ Π±Π΅Π»ΠΊΠΈ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ Π² ΠΌΠΎΠ·Π³Π΅ ΠΌΡΡΠ΅ΠΉ ΠΈ ΠΊΡΡΡ. Π¦Π΅Π»ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ» ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΠΎΠΌΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ ΠΌΠΎΠ·Π³Π° ΠΌΡΡΠ΅ΠΉ. ΠΡΠΎΡΠ΅ΠΎΠΌΠ½ΠΎΠ΅ ΠΏΡΠΎΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΠ²Π΅ΡΠ»Π΅Π½Π½ΡΡ
Π»ΠΈΠ·Π°ΡΠΎΠ² ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΠΎΠΉ ΡΡΠ°ΠΊΡΠΈΠΉ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΠΎΠ² ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ ΠΌΠΎΠ·Π³Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ 5-Π°ΠΌΠΈΠ½ΠΎΠΊΠ°ΠΏΡΠΎΠΈΠ»ΠΈΠ·Π°ΡΠΈΠ½Π° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΡΡΠΈΠ½Π½ΠΎΠ³ΠΎ Π»ΠΈΠ³Π°Π½Π΄Π°. ΠΡΠΈ Π°ΡΡΠΈΠ½Π½ΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ² ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΠΈ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΡΡ
ΡΡΠ°ΠΊΡΠΈΠΉ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΠΎΠ² ΠΌΠΎΠ·Π³Π° ΠΌΡΡΠΈ, Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠΈΡΠΎΠ½ΠΎΠΌ Π₯-100, Π±ΡΠ»ΠΎ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΎ 63 ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
Π±Π΅Π»ΠΊΠ°. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎΠ΅ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΠ°ΠΊΡΠΈΠΉ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΠ° ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΌΡΡΠΈ Π² Ρ
ΠΎΠ΄Π΅ Π°ΡΡΠΈΠ½Π½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ 80 Π±Π΅Π»ΠΊΠΎΠ². ΠΡΠ΅ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π±Π΅Π»ΠΊΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ ΠΌΠΎΠ·Π³Π° ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Π»ΠΈ ΠΊ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌ Π³ΡΡΠΏΠΏΠ°ΠΌ: (I) ΠΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΠ² ΠΈ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ; (II) ΠΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ²; (III) ΠΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄ΠΎΠ² ΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ; (IV) Π€ΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΠΎΡΠΊΠ΅Π»Π΅ΡΠ°, ΡΠΊΠ·ΠΎΡΠΈΡΠΎΠ·; (V) Π Π΅Π³ΡΠ»ΡΡΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ², ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²ΠΊΠΈ; (VI) ΠΠ½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠ½ΡΠ΅ ΠΈ ΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΠ½ΡΠ΅ Π±Π΅Π»ΠΊΠΈ; (VII) ΠΠ΅ΡΠ΅Π΄Π°ΡΠ° ΡΠΈΠ³Π½Π°Π»Π° ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠΎΠ². ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΠ±ΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ², ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ
Π΄Π»Ρ ΠΌΠΎΠ·Π³Π° ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π±ΡΠ»ΠΎ Π½Π΅Π²Π΅Π»ΠΈΠΊΠΎ - Π²ΡΠ΅Π³ΠΎ 12. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ ΠΎΠ±ΡΠΈΡ
Π΄Π»Ρ ΠΌΠΎΠ·Π³Π° ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ² ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ Π² Π³ΡΡΠΏΠΏΠ΅ VI (aΠ½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠ½ΡΠ΅ ΠΈ ΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΠ½ΡΠ΅ Π±Π΅Π»ΠΊΠΈ), ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠΉ β Π² Π³ΡΡΠΏΠΏΠ΅ II (ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ²) ΠΈ Π³ΡΡΠΏΠΏΠ΅ IV (ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΠΎΡΠΊΠ΅Π»Π΅ΡΠ°, ΡΠΊΠ·ΠΎΡΠΈΡΠΎΠ·). ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΡ Π² ΠΏΡΠΎΡΠΈΠ»Π΅ ΠΈΠ·Π°ΡΠΈΠ½-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΡ
Π±Π΅Π»ΠΊΠΎΠ², ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡ, ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΠ΅ΠΊΡΠ°Ρ
ΠΈΠ·Π°ΡΠΈΠ½Π° Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΎΡΠ³Π°Π½Π°Ρ
The grandest of them all : the Lomagundi-Jatuli Event and Earth's oxygenation
Funding: K.K., A.L. and T.K. received funding from Estonian Science Agency Project PRG447 and Yu.D., A.R., D.R. and P.M. were supported by the state assignment of the Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences.The Paleoproterozoic LomagundiβJatuli Event (LJE) is generally considered the largest, in both amplitude and duration, positive carbonate C-isotope (Ξ΄13Ccarb) excursion in Earth history. Conventional thinking is that it represents a global perturbation of the carbon cycle between 2.3β2.1β
Ga linked directly with, and in part causing, the postulated rise in atmospheric oxygen during the Great Oxidation Event. In addition to new high-resolution Ξ΄13Ccarb measurements from LJE-bearing successions of NW Russia, we compiled 14β943 Ξ΄13Ccarb values obtained from marine carbonate rocks 3.0β1.0β
Ga in age and from selected Phanerozoic time intervals as a comparator of the LJE. Those data integrated with sedimentology show that, contra to consensus, the Ξ΄13Ccarb trend of the LJE is facies (i.e. palaeoenvironment) dependent. Throughout the LJE interval, the C-isotope composition of open and deeper marine settings maintained a mean Ξ΄13Ccarb value of +1.5βΒ±β2.4β°, comparable to those settings for most of Earth history. In contrast, the 13C-rich values that are the hallmark of the LJE are limited largely to nearshore-marine and coastal-evaporitic settings with mean Ξ΄13Ccarb values of +6.2βΒ±β2.0β° and +8.1βΒ±β3.8β°, respectively. Our findings confirm that changes in Ξ΄13Ccarb are linked directly to facies changes and archive contemporaneous dissolved inorganic carbon pools having variable C-isotopic compositions in laterally adjacent depositional settings. The implications are that the LJE cannot be construed a priori as representative of the global carbon cycle or a planetary-scale disturbance to that cycle, nor as direct evidence for oxygenation of the oceanβatmosphere system. This requires rethinking models relying on those concepts and framing new ideas in the search for understanding the genesis of the grandest of all positive C-isotope excursions, its timing and its hypothesized linkage to oxygenation of the atmosphere.Publisher PDFPeer reviewe
LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype
We report on the performance of a monitoring system for a prototype
calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled
with photomultiplier tubes. The tests were carried out at the 70 GeV
accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio
Application of gamma activation analysis for research of Cs and I diffusion into a glassceramic matrix
Nuclear reactions ΒΉΒ³Β³Cs(Ξ³,n)ΒΉΒ³Β²Cs, ΒΉΒ²β·I(Ξ³,n)ΒΉΒ²βΆI were utilized for research of Cs and I diffusion in glassceramic matrices. The glassceramic matrix was manufactured with the help of hot isostatic pressing at 910Β°C and pressure 100 MPa. Diffusivities of cesium and iodine in a grain and through interphase boundary at 600Β°C were equal 10β»ΒΉΒΉ and 7.9β
10β»βΉ smΒ²/s, accordingly. The decrease of iodine diffusivity in a grain was observed at 750Β°C. A method of manufacture of glassceramic matrix for long-lived storage and nuclear-waste disposal ΒΉΒ²βΉI is proposed.Π―Π΄Π΅ΡΠ½ΡΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΒΉΒ³Β³Cs(Ξ³,n)ΒΉΒ³Β²Cs, ΒΉΒ²β·I(Ξ³,n)ΒΉΒ²βΆI ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ Cs ΠΈ I Π² ΡΡΠ΅ΠΊΠ»ΠΎΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅. Π‘ΡΠ΅ΠΊΠ»ΠΎΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠ°ΡΡΠΈΡΠ° ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π³Π°Π·ΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ 910Β°Π‘ ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ 100 ΠΠΠ°. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ ΡΠ΅Π·ΠΈΡ ΠΈ ΠΉΠΎΠ΄Π° Π² Π·Π΅ΡΠ½Π΅ ΠΈ ΠΏΠΎ Π³ΡΠ°Π½ΠΈΡΠ°ΠΌ Π·Π΅ΡΠ΅Π½ ΠΏΡΠΈ 600Β°Π‘ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ 10β»ΒΉΒΉ ΠΈ 7,9β
10β»βΉ ΡΠΌΒ²/Ρ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Π΄ΠΈΡΡΡΠ·ΠΈΠΈ ΠΉΠΎΠ΄Π° Π² Π·Π΅ΡΠ½Π΅ ΠΏΡΠΈ 750Β°Π‘. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡΠΏΠΎΡΠΎΠ± ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡΡ Π΄Π»Ρ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΡ ΒΉΒ²βΉI.Π―Π΄Π΅ΡΠ½Ρ ΡΠ΅Π°ΠΊΡΡΡ ΒΉΒ³Β³Cs(Ξ³,n)ΒΉΒ³Β²Cs, ΒΉΒ²β·I(Ξ³,n)ΒΉΒ²βΆI Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈΡΡ Π΄Π»Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π΄ΠΈΡΡΠ·ΡΡ Cs ΡΠ° I Ρ ΡΠΊΠ»ΠΎΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΡΠΉ ΠΌΠ°ΡΡΠΈΡΡ. Π‘ΠΊΠ»ΠΎΠΊΠ΅ΡΠ°ΠΌΡΡΠ½Π° ΠΌΠ°ΡΡΠΈΡΡ Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π° Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π³Π°Π·ΠΎΡΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΡΡΠ²Π°Π½Π½Ρ ΠΏΡΠΈ 910Β°Π‘ Ρ ΡΠΈΡΠΊΡ 100 ΠΠΠ°. ΠΠΎΠ΅ΡΡΡΡΡΠ½ΡΠΈ Π΄ΠΈΡΡΠ·ΡΡ ΡΠ΅Π·ΡΡ Ρ ΠΉΠΎΠ΄Ρ Π² Π·Π΅ΡΠ½Ρ Ρ ΠΏΠΎ Π³ΡΠ°Π½ΠΈΡΡΡ
Π·Π΅ΡΠ΅Π½ ΠΏΡΠΈ 600Β° Π‘ ΡΠΊΠ»Π°Π»ΠΈ 10β»ΒΉΒΉ ΡΠ° 7,9β
10β»βΉ ΡΠΌΒ²/Ρ, Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ ΠΊΠΎΠ΅ΡΡΡΡΡΠ½ΡΠ° Π΄ΠΈΡΡΠ·ΡΡ ΠΉΠΎΠ΄Ρ Π² Π·Π΅ΡΠ½Ρ ΠΏΡΠΈ 750Β°Π‘. ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΡΠΏΠΎΡΡΠ± ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΠΌΠ°ΡΡΠΈΡΡ Π΄Π»Ρ ΠΏΠΎΡ
ΠΎΠ²Π°Π½Π½Ρ ΒΉΒ²βΉI
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
It is only now, with low-frequency radio telescopes, long exposures with
high-resolution X-ray satellites and gamma-ray telescopes, that we are
beginning to learn about the physics in the periphery of galaxy clusters. In
the coming years, Sunyaev-Zeldovich telescopes are going to deliver further
great insights into the plasma physics of these special regions in the
Universe. The last years have already shown tremendous progress with detections
of shocks, estimates of magnetic field strengths and constraints on the
particle acceleration efficiency. X-ray observations have revealed shock fronts
in cluster outskirts which have allowed inferences about the microphysical
structure of shocks fronts in such extreme environments. The best indications
for magnetic fields and relativistic particles in cluster outskirts come from
observations of so-called radio relics, which are megaparsec-sized regions of
radio emission from the edges of galaxy clusters. As these are difficult to
detect due to their low surface brightness, only few of these objects are
known. But they have provided unprecedented evidence for the acceleration of
relativistic particles at shock fronts and the existence of muG strength fields
as far out as the virial radius of clusters. In this review we summarise the
observational and theoretical state of our knowledge of magnetic fields,
relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review
- β¦